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ABSTRACT

This paper presents a model-based approach for noise sup-
pression of speech contaminated by additive noise. A Kalman
�lter based speech enhancement system is presented and its
performance is investigated in detail. It is shown that with
a novel speech parameter estimation algorithm, it is pos-
sible to achieve 10dB noise suppression with a high total
audible quality.

1. INTRODUCTION

A common signal processing problem is the enhancement of
a signal from its noisy measurement. An example with prac-
tical relevance is speech enhancement in hands-free mobile
telephony, where the speech may be severely contaminated
by colored non stationary noise, such as the noise inside
the compartment of a running car. The source is mainly
the engine and the coupe fan at low car speeds, and the
road and the wind at higher speeds.

The motivation for studying a Kalman �lter based noise
suppression system is that it can handle colored noise and
has a reasonable numerical complexity. Additionally it is
well suited to face the speech quality requirements in mobile
telephony, that is low speech distortion, low distortion of
the background noise and a low inherent time delay. One
can note that a Kalman �lter based enhancement system is
implemented in the paci�c digital cellular (PDC) half rate
speech coding standards, [1].

A key issue in Kalman �ltering is that the �ltering algo-
rithm relies on a set of parameters, that for this particular
application are unknown and has to be replaced be esti-
mated quantities. The choice of estimation method is of
outmost importance, since the speech autoregressive (AR)
parameters are estimated from noisy speech data, and the
data is a non stationary process.

In order to obtain a Kalman �lter output with high
audible quality, it is important that the models are accu-
rately estimated. For this application, the background noise
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may be considered long time stationary and consequently
its parameters may be accurately estimated during speech
pauses. Speech may be viewed as a short time stationary
process, that is stationarity for 10-40ms (80-320 samples at
8kHz sampling rate). Thus, an instantaneous model of the
speech has to be obtained from a short segment of noisy
measurements.

The speech enhancement system studied consists of three
main parts, that is a voice activity detector (VAD), an es-
timation module and a Kalman �lter. The VAD and the
estimation module both utilize data blocks of N samples
for detection of speech activity and AR parameter estima-
tion. Accordingly, the model parameters of the Kalman
�lter are updated with the same rate, that is new param-
eter estimates are down-loaded to the Kalman �lter every
32ms (8 kHz sampling rate and N = 256, which is consid-
ered through the paper). This implies that an inherent time
delay of one frame is introduced. A VAD based on the PDC
half rate speech coding standards [1] is used. For each data
frame, it provides a boolean 
ag indicatingthe presence or
absence of speech.

The paper is organized as follows. In Section 2 the para-
metric models are de�ned and the Kalman �lter reviewed.
Section 3, treats estimation of the background noise param-
eters and methods for estimation of the speech parameters.
An improved speech parameter estimation is derived in Sec-
tion 4. The performance of the complete system is investi-
gated in Section 5 and, the conclusions are given in Section
6.

2. DATA MODEL AND KALMAN FILTER

After analog preprocessing and AD conversion, the noisy
speech is modeled as a sum of two AR processes, that is

x(n) = s(n) + v(n) (1)

where x(n) denotes the measured signal, s(n) the speech,
and v(n) denotes the colored noise. Further

s(n) =

pX
i=1

ai s(n� i) +w(n)
(2)

v(n) =

qX
i=1

bi v(n� i) + �(n)

In (2), the design variables p and q denote the model order
for s(n) and v(n), respectively. The noises w(n) and �(n)



are assumed white zero mean with variances �2w and �2�,
respectively. The parameters in (2) are all unknown. In
general, the noise in a car compartment is not stationary,
but it is appropriate to consider it as a stationary process
for periods of 1-2 seconds. The statistics of speech changes
even faster and the model cannot be considered stationary
for more than fractions of a second. Due to the short-time
stationarity of s(n), faig may be assumed time invariant
for 10-40ms. The noise parameters fbig may typically be
assumed constant for 1-2s.

Note that, in speech pauses (1) is reduced to x(n) =
v(n). Thus, in speech pauses the estimation of fbig is triv-
ial.

The problem of interest is to extract the speech from the
noisy measurement. The purpose of modeling the data as
AR processes is to use a model-based method to enhance the
degraded speech. The Kalman �lter solves the problem of
estimating the signal s(n) from observations of fx(k)gnk=0,
[2]. The Kalman �lter relies on a state space formulation.
Let

�(n) = (s(n � p + 1) � � � s(n); v(n� q + 1) � � � v(n))T (3)

then, the state space representation of (1)-(2) is

�(n + 1) = F�(n) +Gz(n)

x(n) = h
T
�(n) (4)

s(n) = h
T

2 �(n)

In (4), F is a (r � r) matrix with r = p+ q, G is a (r � 2)
matrix, h and h2 are column vectors of length r. Further,

z(n) = ( w(n) �(n) )T , and Q = GE
�
z(n) z(n)T

�
GT =

GR1G
T : In h just two elements are non zero, that is h(p) =

1 and h(r) = 1. The vector h2 contains zeros except
h2(p) = 1. Explicit expressions for F, G, and R1 are given
below.
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R1 =

�
�2w 0
0 �2�

�
(7)

Equation (6)-(7) implies that Q is a sparse matrix with only
two nonzero elements, that is Q(p; q) = �2w and Q(r; r) =
�2�.

The Kalman �lter estimate is given by [2]

~P(n) = FP(n� 1)F
T
+Q

k(n) =
~P(n)h

hT ~P(n)h

�̂(n) = F�̂(n� 1) + k(n)
�
x(n)� hTF�̂(n� 1)

�
(8)

P(n) = [Ip+q � k(n)h
T
] ~P(n)

ŝ(n) = h
T

2 �̂(n)

In (8), ~P(n) is the covariance matrix for the prediction er-
ror, P(n) is the covariance matrix for the estimation error,
k(n) is the Kalman gain which controls the step-size, and

�̂(n) is the estimated state space vector. Since updated val-
ues of (faig, fbig, �

2
w, �eta

2) are down-loaded every 32ms,
the Kalman �lter is re-initialized according to the �nal val-
ues from the previous frame.

The Kalman �lter provides the best linear unbiased es-
timate of �(n). Unfortunately, this is not the same as max-
imizing the audible quality. Problems may arise from cases
when the Kalman �lter is to sharp, that is when the noise
and parts of the speech is removed. This can be handled
by reducing the distance from the poles to origin of coordi-
nates in the estimated model. The noise variance is also a
parameter that acts on the �lters sharpness. If �2� is scaled
by �, � < 1, the e�ect of the �lter is reduced.

The computational complexity of the Kalman �lter may
be signi�cantly reduced because of the sparse structure of
the matrices F, Q and h, see [3] where a linear transforma-
tion of the state vector, �(n), is considered. The numerical
bene�t of such an optimization is that the total complexity
is reduced from r3 +10r2 to 10r2 additions and multiplica-
tions per processed sample.

3. PARAMETER ESTIMATION

The problems concerning parameter estimation have to be
carefully examined. Poor estimates of the speech or noise
AR parameters result in model errors in the Kalman �lter.
This implies that the enhancement of the speech from the
noisy measurement yields poor audible quality.

Estimation of fbig and �2n in (2) is performed during
speech pauses. Since a �xed 32ms block length is uti-
lized, an averaging of the autocorrelation function (ACF)
is used. The ACF for the noise is estimated as 
̂(k) =

1=N
P

N�k

i=1
v(k+ i)v(i) and updated at frame level accord-

ing to 
̂`(k) = �
̂`�1(k)+(1��)
̂(k) where 
̂`(k) denotes the
running average in frame ` based on 
̂(k). The Levinson-
Durbin algorithm is used for AR parameter calculation, [4].

The estimation of the noise parameters during speech
pauses requires pauses with certain intervals. If the VAD
detects speech activity for longer time than the stationarity
holds for the noise, the model will loose in accuracy. How-
ever, one may use the Kalman �lters estimates of the noise
to update the noise model during speech activity.

There are several methods to estimate the speech pa-
rameters from the degraded speech, that is the problem of
estimating faig and �2w in (2) from (1) where the proper-
ties of the noise are partially known. Some methods are
outlined below.

The most straightforward method is to estimate the
parameters directly from the degraded speech, that is the



speech is approximated with the received noisy speech. This
approach works well for data frames with high SNR, but
for moderate and low SNR the performance is severely de-
graded since the approximation, that x(n) � s(n) , is no
longer valid. This results in poor estimates and conse-
quently the Kalman �lter will not work as intended.

An alternative is iterative direct estimation, proposed
in [3]. In a �rst step the estimated AR speech parame-
ters obtained from the noisy data are used in the Kalman
�lter. The output from the Kalman �lter, ŝ(n), is used
to enhance the parameter estimates, that is, a new set of
speech AR parameters is estimated from ŝ(n) and used in
a second Kalman �lter. This method has the same kind of
problem as direct estimation, for low SNRs the output from
the Kalman �lter is often distorted. The iterative method
does not guarantee an improved estimate in terms of audi-
ble quality.

Neither of the previous methods make use of the fact
that the noise parameters are estimated during speech pauses.
Such an approach is outlined below. Rewrite (1) and (2) as

x(n) =
B(q�1)w(n) +A(q�1)�(n)

A(q�1)B(q�1)
(9)

The parameters fbig and �2�, are unknown, but due to the
long-time stationarity of the background noise, accurate es-

timates B̂(q�1) and �̂2� are available. Then, �ltering x(n)

with B̂(q�1) gives

y(n) = B̂(q�1)x(n) �
C(q�1)

A(q�1)
e(n) (10)

where C(q�1) is a polynomial of degree max(p; q) and e(n)
is a white noise. From (10) it is evident that faig may be
estimated as the AR part of an ARMA process. E�cient
algorithms may be found, for example, in [4]. Our experi-
ence is that in practice it is hard to get accurate estimates
of faig due to the �nite block length N .

4. IMPROVED SPEECH PARAMETER
ESTIMATION

In this section, the spectral features of the speech will be
used to obtain accurate estimates of the speech parameters.

The polynomial A(q�1) determines the characteristic of
the speech, therefore it is natural to consider the power
spectral density (PSD) corresponding to A(q�1) as an im-
portant feature of the speech. The proposed method esti-
mates the PSD for the speech. The parameters A(q�1) and
�2w are then implicitly calculated from an estimated speech
PSD.

The PSDs are evaluated in M equidistant points. The
choice of M can be done independently of the size of the
speech analyses frame, N . ClearlyM has to be greater than
p. From (1)-(2) it follows that

�x(k) = �s(k) + �v(k) k = 1; : : : ;M (11)

where �(k) is a short notation for �(2�k=M), and where

�s(k) = �2w= j A(ej!) j2; ! = 2�k=M . Since �v(k) can be
estimated during speech pauses, it is natural to estimate
the speech PSD as

�̂s(k) = �̂x(k)� �(k)�̂v(k) k = 1; : : : ;M (12)

where �̂x(k) is an estimate based on data in the present
frame. In (12), �(k) is a possibly frequency dependent de-
sign variable. The variable, �(k) may be used in order to
optimize the performance, for example

�opt(k) = arg minE
�
�̂s(k)� �s(k)

�2
(13)

where �̂s(k) is given in (12). In a �rst approximation, see
[5] for details

Var(�̂v(k)) �
1� �

2

2q

N
�2
v(k) (14)

Var(�̂x(k)) �
2p

N
�2
x(k) (15)

where N is the frame length, p and q the model orders
in (2) and 2=(1 � �) roughly determines the number of

frames used to estimate the noise parameters. Let �̂v(k) =

�v(k) + �v(k) and �̂x(k) = �x(k) + �x(k) where �v(k)
and �x(k) are stochastic quantities that have zero means
and variances given by (14) and (15), respectively. Further
�v(k) and �x(k) are approximately uncorrelated [5], that

follows from the fact that �̂v(k) and �̂x(k) are calculated
from di�erent sets of data, and that the input data is non-

stationary. Further, let ~�s(k) denote the PSD estimation

error, that is ~�s(k) = �̂s(k) � �s(k). Then, a straight
forward calculation gives

~�s(k) = �v(k)(1� �(k)) +�x(k)� �(k)�v(k) (16)

Note that the �rst part of (16) is deterministic. Thus the
mean square error (MSE) is

E
�
~�2
s(k)
�
� (1��(k))2�2

v(k) +
2p

N
�2
x(k) + �

2(k)
1��

N
q�2

v(k) (17)

Now minimize E
�
~�2
s(k)

�
with respect to �(k). From (17)

it follows that

�opt =
N

N + (1� �)q
(18)

Note that �opt is frequency independent and �opt < 1.
Since (12) contains estimated quantities, the PSD sub-

traction may result in negative values for some k. To pre-
vent negative values it is appropriate to set a �xed minimum
level, or to use a �xed maximum reduction.

The parameters faig and �2w, with corresponding PSD

as close to �̂s(!), in (12), as possible, are sought. It is
not possible to calculate faig or �2w directly, therefore an
iterative algorithm is unavoidable. A recursive prediction
error method (RPEM) is used to �t the given situation, [4].
In initializing the RPEM algorithm, the parameters from
the degraded speech are used. The number of iterations is
highly dependent on the initial values. For frames with low
SNR, the lower frequencies often have very poor initial es-
timates since background noise in mobile communications
often has lowpass properties. This fact can be used to mo-
tivate interrupt conditions such as low error and small gain.
The stability of the algorithm can be checked by ensuring
that the roots of the AR polynomial is located inside the
unit circle. If divergence is detected the output parameters
is set to the initial values.
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Figure 1: The RPEM algorithm performance for p = 10
and � = 1. The solid line represents the speech PSD, the
dashed line the estimated speech PSD and the dotted line
the PSD when no post processing is applied.

5. PERFORMANCE

This section treats the experimental results of the speech
enhancement system. Genuine data is used, that is car noise
or \cocktail party" noise is added to pre-recorded speech.

The performance of the method in section 4 is illus-
trated in Figure 1, where the solid line represents the speech
PSD (calculated from the clean speech signal using p = 10),
the dashed line the estimated speech PSD (using p = 10 and
� = 1. The dotted line indicates the degraded speech PSD,
which is the initial values for the RPEM algorithm. It is
clear that a signi�cant improvement is achieved.

Our experiments indicate that the improved estimates
correspond to a direct parameter estimation of noisy speech
with 12dB higher SNR, in terms of MSE, for SNR< 10dB.

The performance of the complete system has been stud-
ied in detail. The conclusion is to use direct estimation of
the speech AR parameters when the frame SNR is high, and
improved estimation, such as the method above, when the
frame SNR is low. This requires a criterion based on the
frame SNR, that decides whether to use direct estimation
or one of the more advanced methods previously discussed.

A listening test has been carried out in order to evaluate
the performance of the speech enhancement system. The 12
experienced test persons listened to three di�erent versions
(Kalman �ltered, enhanced by a low distortion spectral sub-
traction (SS) method [5] and the original noisy speech) of
the same sentences, but two at a time. The comparisons
were carried out in random order. Each time a sentence
was chosen, one point was awarded to the type of �le that
was chosen (KF, SS or noisy speech) and the other �le type
lost one point. The average results for the di�erent subtests
are displayed in Figure 2. An average of 1 indicates that
the �le was preferred every time, 0 indicates preferred every
second time and -1 that the �le was rejected every time.

In the �rst subtest the �le contained two female speakers
and two male speakers contaminated by car noise. The re-
sults displayed in Figure 2a, show that a signi�cant quality
improvement is achieved when noise reduction is applied.

In the second subtest the background noise was babble
noise, that is a non-stationary noise such as \cocktail party"
noise. The results in Figure 2b, show that SS was preferred
compared to KF, but KF was far more popular then the
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Figure 2: Method preferences for di�erent kinds of back-
ground noise. a) car noise SNR=10dB, b) babble noise.

original noisy data.

6. CONCLUSIONS

In this paper, a Kalman �lter based speech enhancement
system is studied. The system comprises of three parts, a
voice activity detector, a parameter estimation unit, and a
Kalman �lter.

Depending on the SNR in the processed data frame,
two di�erent strategies for speech AR parameter estimation
are employed. For high frame SNRs the AR parameters
are estimated from the noisy speech, while for low SNR
these parameters are post-processed in order to reduce the
estimation error due to the additive noise. An algorithm for
this purpose has been outlined in some detail. It is based
on standard signal processing building blocks such as FFT
and the autocorrelation method, in combination with a low
complexity iterative scheme.

It has been demonstrated that the complete noise re-
duction system is able to reduce the background noise level,
in the mobile telephony scenario, with approximately 10dB
without introducing any speech distortion or distortion of
the background noise. Thus, it may be a suitable alterna-
tive for front-end noise reduction in the mobile telephony
scenario.
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