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ABSTRACT

In this paper we present a robust speaker independent

speech recognition system consisting of a feature extraction

based on a model of the auditory periphery, and a Locally

Recurrent Neural Network for scoring of the derived fea-

ture vectors. A number of recognition experiments were

carried out to investigate the robustness of this combina-

tion against di�erent types of noise in the test data. The

proposed method is compared with Cepstral, RASTA, and

JAH-RASTA processing for feature extraction and Hidden

Markov Models for scoring. The presented results show that

the information in features from the auditory model can be

best exploited by Locally Recurrent Neural Networks. The

robustness achieved by this combination is comparable to

that of JAH-RASTA in combination with HMM but with-

out any requirement for an explicit adaptation to the noise

in speech pauses.

1. INTRODUCTION

Robustness of recognition performance against additive

background noise and convolutive distortions due to chan-

nel or microphone characteristics is still a serious problem

in automatic speech recognition. One approach to overcome

this problem is to apply a model of auditory preprocessing

for extraction of noise robust feature vectors. In the con-

text of speech recognition, the most promising models are

those which take into account the �ndings of psychoacous-

tic experiments. Ideally, the features extracted with such a

model represent the information contained in a speech sig-

nal in the most relevant form. Properties of human speech

perception, like frequency warping, loudness sensitivity, or

noise masking, can be exploited without exact knowledge

about the signal processing in the auditory system.

However, the representation of speech signals delivered

from a psychoacoustically oriented auditory model does not

automatically lead to robust speech recognition. Addition-

ally, an adequate technique for exploiting the information

represented in the feature sequences is essentially required.

Hidden-Markov-Models (HMM) and Arti�cial Neural Net-

works are recently the most promising approaches for the

acoustic modeling and scoring of feature sequences. With

respect to speaker independent word recognition both ap-

proaches show about the same performance with noise-free

speech signals. Unfortunately, both concepts don't have

an inherent robustness, i.e. are sensitive against noise in

a sense that speech recognizers optimized with noise-free

speech data show a dramatic decrease of their recognition

performance for noisy speech

In this paper, a robust speech recognition system (SRS)

for speaker independent recognition of isolated words is pre-

sented. It consists of a feature extraction based on a model

of the auditory periphery, and a Locally Recurrent Neural

Network (LRNN) for scoring of the derived feature vectors.

A number of recognition experiments were carried out to

investigate the robustness of this combination against dif-

ferent types of noise in the test data. The results were

compared with other approaches for feature extraction and

scoring techniques used in SRS.

2. AUDITORY PERCEPTION MODEL

The auditory perception model (PEMO) simulates the pro-

cessing of the auditory system [1]. The speech signal is

preemphasized by �rst-order di�erentiation and �ltered by

a gammatone �lterbank with 19 bandpass �lters with center

frequencies from 330-4000 Hz. The bandwidths and center

frequencies of the gammatone �lterbank simulate the crit-

ical �lters in the auditory system. Each frequency channel

is half-wave recti�ed and lowpass �ltered at 1 kHz for enve-

lope extraction. This simulates the limiting phase-locking

for auditory nerve �bers at high frequencies. The next stage

of the perceptive preprocessing is a set of �ve consecutive

adaptation loops. Each of these loops consists of a divider

and a RC-low pass. The input signal is divided by the low

pass �ltered output signal. Thus, fast changes of the en-

velope are transformed linearly, whereas slow variations of

the envelope are compressed by a square root law. Com-

bining �ve consecutive adaptation loops approximates the

logarithm of the average input fairly well. Due to this adap-

tive compression unit, changes in the input signal are con-

trasted, constant parts of the input are suppressed. The last

step of the perceptive preprocessing is an 8 Hz low-pass �l-

ter at the output of the adaptation loops for each center

frequency. The low-pass �lter characterizes the auditory

system's sluggishness in following rapid envelope 
uctua-

tions. The output of the auditory model was blocked into

frames of 10 ms with 19 coe�cients. In Figure 1 the wave-

form of an utterance of the german word Sieben and its

representation by PEMO processing is shown. It can be

seen that PEMO processing emphasizes fast changes in the

waveform caused by transitions of phones. In the presence

of noise this emphasized representation of speech will be
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Figure 1. Waveform of an utterance of Sieben and

its representation by PEMO processing

preserved although it may be slightly degraded.

3. LOCALLY RECURRENT NEURAL

NETWORKS

Locally Recurrent Neural Networks (LRNN) are biologi-

cally motivated and have been introduced [2, 3] in order to

reduce the computational complexity of fully connected re-

current neural networks. It has been shown that SRS based

on LRNN achieve recognition results for isolated words

and connected digits which are comparable to sophisticated

HMM based systems. A LRNN consists of an input layer,

a hidden layer, and an output layer. The interactions be-

tween the input and the hidden layer as well as between the

hidden and the output layer are unidirectional and sparse.

The recurrent connections of the hidden neurons are end-

ing at the edges of the grid. In Figure 2 the weight values

of a LRNN are shown in a Hinton Diagram. The LRNN

was trained to recognize 10 digits on the basis of PEMO

processing. The recognition performance of this particular

LRNN and other similar designed networks trained on the

basis of di�erent kinds of features will be reported later on.

The input layer consists of 95 neurons, the hidden layer of

169 neurons, and the output layer of 10 neurons. The abso-

lute values of the weights are coded as gray scaled squares.

It can be seen that each neuron of the hidden layer has con-

nections to only one �fth of the input neurons. Moreover,

the recurrent connections in the hidden layer are restricted

to the four nearest neighbours of each hidden neuron. Also

obvious is that connections from input to output neurons

and from output back to hidden neurons do not exist. The

described topology of the LRNN leads to a total amount

of about 15000 weights in contrast to 50000 weights of a
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Figure 2. Weight values of a LRNN based on PEMO

processing for recognition of 10 digits

fully connected recurrent network with the same amount

of neurons. In simulation experiments it has been revealed

that the amount of neurons can be reduced in the case of

fully connected recurrent networks so that a total amount

of about 30000 weights resulted. Nevertheless, the appli-

cation of LRNN for recognition of isolated word leads to

a tremendous reduction in computational load and com-

plexity. Thus, a hardware realization of LRNN for speech

recognition as single chip solution could be done.

LRNN are trained by truncated back-propagation

through time (BPTT). Due to the recurrent connections

in a LRNN it is possible to exploit information distributed

over time in a feature sequence for classi�cation. Com-

pared to approaches based on Hidden Markov Models the

extraction of dynamic features is obsolete and no Viterbi

algorithm for compensating varying word durations is re-

quired. This furthermore, supports a single chip realization

of the complete speech recognizer.

4. RECOGNITION EXPERIMENTS

4.1. Speech Data

In order to evaluate the proposed SRS consisting of

perceptually-based preprocessing and LRNN we con�gured

systems using di�erent preprocessing modules as well as

scoring techniques for speaker-independent recognition of

isolated German words.

The vocabulary of the data base used in the simulation



experiments consists of the 10 German digits. For comput-

ing the parameters of the various SRS feature vectors from

100 utterances of each word spoken from di�erent speak-

ers were used. Speaker-independent recognition rates were

measured on a set containing 100 utterances of each word

from speakers not included in the training set. The robust-

ness of speech recognition was tested with additive back-

ground noise and convolutive noise caused by changes in

the microphone and the telephone channel. Three di�erent

types of noise were used: 1) white gaussian noise (WGN), 2)

speech-simulating noise (SSN), which was generated from a

random superposition of words spoken by a male speaker,

3) background noise recorded on a construction site (CON).

The �rst two noise types (WGN and SSN) are stationary,

i.e. their spectral shape and power do not change over time.

The third noise (CON) exhibits 
uctuations in both spectral

shape and power. Each of these three background noises

was added to the test material before feature extraction at

two signal-to-noise ratios (SNR). The training was always

done with clean speech.

To introduce another more realistic noisy environment, a

second set of test data (TUBTEL) was applied. These data

consist of 117 utterances of each digit, spoken by di�erent

persons over dialed-up public telephone lines in the Berlin

area [4]. Therefore, microphone and channel characteristics

strongly in
uenced the recorded speech signals. These tele-

phone speech data were not used for training, but only for

testing.

4.2. Feature Extraction

Four preprocessing techniques were applied to compare the

robustness of the feature vectors: 1) Cepstral Coe�cients

(LPC-CEP) { 12 cepstral coe�cients, derived from LPC

parameters, and short term energy calculated every 10ms

using 32ms Hamming windows. The temporal derivatives

of these values were used as additional dynamic features. 2)

RASTA processing { the speech was processed using a 20 ms

Hamming window, the critical bands were transformed with

a logarithmic mapping before bandpass �ltering and param-

eterized into 9 PLP-cepstral values [5]. 3) JAH-RASTA

processing { this type of processing was introduced in or-

der to improve the robustness of RASTA processing against

additive and convolutive type of noise by adapting the fea-

ture extraction to the noise level of an utterance [6]. The

J value which determines the noise level adaptation is cal-

culated from the �rst 125ms of each utterance, which has to

be speech-free for optimized performance. To transform the

spectrum obtained from a J value corresponding to noisy

speech to a spectrum processed with a J value for clean

speech, mapping coe�cients were calculated from J-RASTA

�ltered critical band outputs from a subset of the training

utterances. 4) PEMO processing { the speech data was pre-

processed with the auditory perception model as described

above. The gammatone �lterbank consisted of 19 band-

pass �lters with center frequencies from 330-4000 Hz. The

output of the auditory model was sampled every 10ms.

4.3. Scoring

We evaluated the proposed SRS based on LRNN by com-

parison with SRS based on Continuous (CHMM) or Dis-

crete Hidden Markov Models (DHMM). In the case of the

CHMM based SRS every word model consists of 8 emit-

ting states each containing 5 gaussian mixtures with diago-

nal covariance matrices. This con�guration leads to about

33000 parameters which have to be adjusted in the process

of training. In the case of DHMM based SRS the word

models consist of 8 emitting states. The feature vectors are

divided into two streams, one consists of the basic feature

coe�cients and the other one of the derivated coe�cients.

For each stream a codebook with 128 vectors was trained.

In the training mode about 20000 parameters had to be ad-

justed. But one has to take into account that the two code-

books consist of about 5000 additional parameters which

had to be adjusted separately. For scoring the feature vec-

tors during recognition mode the three nearest codebook

vectors are used in a fuzzy manner.

Preliminary experiments have shown that HMM based

SRS bene�ts from the usage of dynamic information.

Therefore, so-called Delta coe�cients were used together

with the basis coe�cients in the case of all feature extrac-

tion modules for SRS based on HMM. Moreover, it was re-

vealed in these experiments that DHMM based SRS show

a signi�cantly higher robustness against additive and con-

volutive noise as CHMM based systems. These results were

also found in previous experiments [7]. In the reported ex-

periments we used therefore DHMM based SRS which are

con�gured to use basis coe�cients along with Delta coe�-

cients in two di�erent streams. In both HMM based SRS a

word hypothesis is generated on the basis of the optimum

path for every word, calculated by a standard Viterbi algo-

rithm.

The LRNN consists of 169 neurons in the hidden layer

with recurrent connections between the 5 nearest neigh-

bours and 10 neurons in the output layer for representing

the words of the vocabulary. Because of the sparse connec-

tivity each neuron of the hidden layer is connected to only

one �fth of the input neurons. As input patterns 5 consec-

utive non-overlapping feature vectors are used i.e. without

providing explicit delta information. By gluing �ve feature

vectors together the time span a LRNN can memorize is

extended to the duration of a complete word. The number

of neurons in the input layer varies between 45 and 130 be-

cause the size of the feature vectors depends on the type

of preprocessing. This architecture results in about 15000

weights of the LRNN which had to be adapted in the train-

ing. By accumulating the activities of the output neurons

for all patterns of an utterance the word hypothesis is cal-

culated.

4.4. Results

In Table 1 the recognition performance for DHMM and

LRNN based SRS using the di�erent procedures for feature

extraction are shown. It can be seen that the cepstral rep-

resentation of speech is highly sensitive against noise, even

if delta information is used as in the case of DHMM. Using

RASTA processing leads to a signi�cantly improved per-

formance in noisy environments. In the case of a SNR of

20 dB SRS using RASTA processing show a fairly well ro-

bustness for stationary and convolutive noise. The sensitiv-

ity against changing noise characteristics and additive noise

is due to the RASTA algorithm. JAH-RASTA processing

overcomes these limitations by an explicit adaptation to the



Table 1. Speaker independent, isolated digit recognition rates in per cent from DHMM and LRNN based

recognition systems for di�erent types of noise

LPC-CEP RASTA JAH-RASTA PEMO

NOISE DHMM LRNN DHMM LRNN DHMM LRNN DHMM LRNN

clean 97.9 96.6 99.2 98.9 99.0 98.2 96.7 98.1

WGN 10 dB 12.9 10.0 71.7 49.5 84.7 86.6 59.7 80.1

WGN 20 dB 52.4 11.3 94.2 86.8 96.3 94.3 87.5 95.1

SSN 10 dB 67.7 41.5 77.1 79.6 84.4 78.6 77.7 84.6

SSN 20 dB 94.0 80.1 96.1 96.0 97.0 94.0 94.5 96.5

CON 10 dB 36.0 30.0 66.7 50.5 82.5 81.4 76.0 89.4

CON 20 dB 84.2 72.9 92.5 87.5 97.3 94.3 94.3 97.2

TUBTEL 81.1 83.0 90.5 88.5 91.3 90.8 86.3 94.5

noise characteristics and level. Our experiments show that

this adaptation leads to a signi�cantly improved robustness

against additive construction noise and telephone speech

which are the more realistic environments. For all three so

far discussed types of feature extraction DHMM and LRNN

based SRS exhibit about the same recognition performance

and sensitivity against the various noise types. In combina-

tion with PEMO processing, DHMM achieve a comparable

robustness against WGN and SSN as DHMM in combina-

tion with RASTA processing. Against CON and TUBTEL

the DHMM based SRS using PEMO show a slightly better

robustness than the combination of DHMM with RASTA

processing. But in all cases the combination with JAH-

RASTA delivered the highest robustness among the DHMM

based SRS.

In contrast, LRNN based SRS reach for all types of noise

the highest performance in combination with PEMO. Ob-

viously, scoring with LRNN takes the most advantage out

of the perceptive representation of speech gained from the

auditory model. In comparison to the best DHMM based

SRS, which is using JAH-RASTA processing, the here pre-

sented SRS consisting of PEMO processing and LRNN show

in the case of WGN and SSN about the same robustness,

but in the case of CON and TUBTEL a signi�cantly higher

robustness. It is important to notice that PEMO works

better for non-stationary noise like CON and in realistic

environments like TUBTEL, although no explicit adapta-

tion to the noise environment is done. This result demon-

strates the outstanding capability of PEMO in combination

with LRNN to exploit psychoacoustical �ndings for robust

speech recognition. Furthermore, it is remarkable that the

LRNN based SRS is able to exploit the inherent robustness

of PEMO with a signi�cantly smaller number of parameters

than even DHMM based SRS.

5. CONCLUSIONS

The combination of perceptive preprocessing and LRNN

for scoring leads to signi�cantly higher recognition rates

than systems with cepstral or RASTA coe�cients as fea-

ture vectors. Adaptive JAH-RASTA processing in combi-

nation with DHMM gives comparable results for stationary

and convolutive noise, but some restrictions have to be ac-

cepted: the beginning of each test utterance is assumed to

be speech-free to calculate an estimate of the noise power.

If the power of the background noise changes during the

utterance, the calculated J-value is no longer valid. Per-

ceptive preprocessing on the other hand is independent on

assumptions about the noise level, no parts of the input

signal are assumed to be speech{free, no mapping between

feature vectors from quiet and noisy utterances is needed.

If the noise level changes during the utterance, the pre-

processing adapts instantaneously. Obviously, LRNN are

able to model and exploit the characteristics of this type of

features. Thus, the proposed combination of PEMO with

LRNN achieves a highly robust recognition performance.

Current investigations are concentrated on a detailed anal-

ysis of the interactions between the auditory preprocessing

and the neural modeling of the features.
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