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ABSTRACT

An improved method for phoneme recognition in
noise is presented using an auditory image model and
cross-correlation in a binaural approach called the binaural
auditory image model (BAIM). Current binaural methods
are explained as background to BAIM processing. BAIM
and a variation of the cocktail-party-processor incorporating
the auditory image model are applied in phoneme recogni-
tion experiments. The results show BAIM performs as well
or better than current methods for most signal-to-noise ra-
tios.

1. INTRODUCTION

This paper presents a binaural phoneme recognizer in-
corporating the head-related-transfer-functions (HRTFs) of
P�osselt et al. [1], the auditory image model of Patterson [2],
cross-correlation and a Kohonen [3] neural network. The
P�osselt HRTFs are used to produce left and right signals
from a source. Each of these signals is corrupted by noise
and sent to an auditory image model to produce neural
activity patterns for the left and right ear simulation. The
neural activity patterns are correlated at a given azimuth
and a feature vector is extracted. Such feature vectors are
used to train a Kohonen self-organizing feature map which
is calibrated as a phoneme recognizer using portions of the
TIMIT speech corpus.
A brief background follows succeeded by details of the

binaural auditory image model (BAIM); modi�cations of the
cocktail party processor (CPP) [4] incorporating the audit-
ory image model (AIM); results from phoneme recognition
experiments; and a conclusion.

2. BACKGROUND

2.1. E�ectiveness of Binaural Methods

Binaural phoneme recognition using auditory models is more
e�ective than similar monaural methods in noise. For ex-
ample, DeSimio [5] achieves a 5 dB signal-to-noise ratio
(SNR) advantage over monaural processing using a bin-
aural model based on stereausis. Bodden and Anderson [4]
demonstrate a 20 dB SNR advantage over a similar mon-
aural method using the Cocktail-Party-Processor.

2.2. Binaural Fusion by Stereausis

DeSimio [5] uses several stages of processing to achieve bin-
aural fusion. First, left and right signals are produced from

a source using HRTFs by Wightman and Kistler [6]. Then,
the left and right signals are processed through identical
cochlear models by Kates [7].
DeSimio [5] uses the stereausis technique for binaural

fusion. The stereausis processor fuses multi-channel, left
and right data streams from the Kates models into a two-
dimensional image.

DeSimio extracts feature vectors from the stereausis im-
age at selected locations, to improve phoneme recognition in
noise. These feature vectors are inputs to a Kohonen self-
organizing feature map calibrated as a classi�er. DeSimio's
system is the �rst binaural processing system applied to
phoneme recognition. Stereausis achieves a 5 dB SNR ad-
vantage over equivalent monaural processing [8].

2.3. Binaural Fusion by Variants of the Cross-

Correlation

Bodden and Anderson [4] use the Cocktail-Party-Processor,
in an approach similar to DeSimio, to achieve a 20 dB SNR
advantage over monaural processing. HRTFs of P�osselt [1]
are convolved with speech to produce left and right head-
related signals, much like DeSimio. In contrast to the aud-
itory image model of Patterson, used in this work, or the
Kates model used by DeSimio, the Cocktail-Party-Processor
uses a bank of critical-band �lters to model the cochlear re-
sponse. Then, the output from each �lter is given to the
square root and half-wave recti�cation functions before sub-
mission to the Cocktail-Party-Processor.
The Cocktail-Party-Processor is based on the inhibited

running cross-correlation of Lindemann [9] [10]. Lindemann
uses a portion of the contralateral signal to sharpen the
initial correlation peak and suppress subsequent correla-
tion peaks. Lindemann suggests the use of the station-
ary cross-correlation for stationary signals (See Equation
1) and the running cross-correlation (See Equation 2) for
non-stationary signals. (In these equations, r stands for
data from the right and l stands for data from the left.
T is the time constant parameter used to control the im-
pact of the exponential on the correlation.) The Cocktail-
Party-Processor incorporates the running, inhibited cross-
correlation, which is the running correlation computed with
modi�ed data from the left(l) and right(r). Data modi�ca-
tion produces the inhibition. See Lindemann [10] for details.
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nX
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There are two major di�erences between the station-
ary and running cross-correlations. The stationary cross-
correlation of Equation 1 correlates a limited amount of
data with equivalent weight for each product. On the other
hand, the running cross-correlation of Equation 2 applies, at
least theoretically, to an in�nite data set whose products are
weighted with an exponential function. Practically speak-
ing, the running cross-correlation applies to a limited data
set due to the time constant, T, in the exponential func-
tion. Nevertheless, the data is weighted di�erently than the
stationary case if both are applied to the same data.
Finally, the Cocktail-Party-Processor produces an azi-

muth coded vector. The azimuth coded vector consists of
the peak values from the inhibited correlation peaks in each
critical band. Correlation peaks are produced at a given
delay corresponding to the azimuth of the source. Thus, a
vector is produced at every time sample interval at a selected
azimuth. These vectors are subsequently applied to phon-
eme recognition with a Kohonen, self-organizing, feature-
map (SOFM) calibrated as a phoneme recognizer. Bodden
and Anderson's [4] results are plotted in Figure 2 for com-
parison later in this paper.

2.4. The Auditory Image Model

Patterson's auditory image model (AIM) [2] [11] simulates
the processing of the cochlea and can produce image pat-
terns of sound. His model begins with a bank of gammatone
�lters with impulse responses comparable to the impulse re-
sponses obtained from cats. These �lters are better estim-
ates of human �lter-shape than the critical bands determined
by Zwicker [12]. Speci�cally, Patterson applies recti�cation,
compression, adaptation, and low-pass �ltering after each
gammatone �lter, to simulate cochlea response, with adapt-
ation in the time domain and suppression in the frequency
domain, simultaneously. Consequently, the gammatone �l-
ter bank emulates the performance of the basilar membrane
and the remaining processes emulate the performance of the
inner hair cells and primary auditory nerve �bers of the
cochlea.
The auditory image model has several options. Function-

ally, the model produces a response called a neural activity
pattern that represents the sum of the activity of the hair
cells for the section of the basilar membrane of the cochlea
corresponding to the bandwidth of each �lter in the gam-
matone �lter bank of the model.

3. BAIM

The binaural auditory image model consists of four parts as
shown if Figure 1. The �rst stage uses head related transfer
functions of P�osselt et al. [1], to simulate sources at various
azimuths relative to the head. The next two stages consist of
the auditory image model of Patterson followed by a cross-
correlation function. The last stage is a feature extractor.
These parts are used for binaural processing in noise in the
following way:

Figure 1. BAIM Processing
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First, left and right signals are produced. A signal source
is convolved with the appropriate HRTFs of P�osselt to pro-
duce left and right signals. A speaker at zero degrees is
simulated using the HRTFs for zero degrees azimuth. Sim-
ilarly, a noise source at 30 degrees is produced with the
appropriate HRTFs. Thus, each source produces a left and
right signal.
Second, noisy speech is produced. This is accomplished

by adding all of the left HRTF outputs together and then
adding all of the right HRTF outputs together. This pro-
duces a noisy left and a noisy right signal.
Third, the noisy signals are sent to auditory image mod-

els. The auditory image model produces neural activity pat-
terns from each gammatone �lter in the �lter bank. (See [2]
for model details). Thus, the auditory image model simu-
lates the performance of the cochlea in the inner ear. In this
manner, a data stream is produced for a selected number
of frequency bands in the range of human hearing. In this
work, 18 channels are used for each ear.
Fourth, the outputs from the auditory image models are

correlated. These correlations are done for each channel
across corresponding channels of the left and right neural
activity patterns generated by the auditory image mod-
els. The correlation is done over a window which is 33
points wide. Thus, a stationary cross-correlation, shown
in Equation 1, is used instead of a running, inhibited cross-
correlation. The correlation window is advanced through
the left and right signal, one sample point at a time, in each
channel; consequently, a correlation result is produced for
every sample point in every channel for the length of the
utterance.
After the correlation is performed, a feature vector is ex-

tracted across the channels for a given azimuth using the
correlation results from each channel. Since a stationary
correlation is performed in each channel across right and
left neural activity patterns, the maximum correlation is
expected at � = 0 for a speaker at zero degrees azimuth
relative to a person's head. (See Equation 1.) Therefore,
for these experiments, the correlations of the left and right
neural activity patterns are calculated at � = 0 to produce
the feature vectors for a speaker at zero degrees to be sent
to the next stage of processing. Please note for future refer-
ence: this is called the no head adaption case. It is possible



Figure 2. Cocktail-Party-Processor vs BAIM
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to gain an additional improvement in phoneme recognition
by choosing a more precise � slightly di�erent due to the
impact of head shape in the HRTFs. This is done by de-
termining the � of maximum correlation due to an impuls-
ive sound at zero degrees for each frequency band. Then,
these � 's are used in subsequent correlation calculations for
feature vectors. This later case is referred to as the head
adapted case in the discussion that follows.

Finally, the feature vectors are used with a Kohonen self-
organizing feature map calibrated as a classi�er. This clas-
si�er is trained on the feature vectors described above using
the leave-one-out-method described by DeSimio [5] [8] and
Bodden and Anderson [4] for ten utterances, each from ten
speakers, selected from the TIMIT speech corpus. Then the
trained classi�er is used in the tests of the system.

Using the method above, tests were performed for seven
signal-to-noise ratio cases: -21 dB, -9 dB, -3 dB, 3 dB, 9
dB, 21 dB and clean (no noise). The results are shown
in Table 1, Table 2 and Figure 2 for the head adapted and
no head adaption cases. Notice the slight improvement in
the head adapted case. These results are also contrasted
with Bodden and Anderson's cocktail-party-processor [4] in
Figure 2.

Table 1. BAIM: No Head Adaptation
% Correct vs SNR

-21dB -9dB -3dB 3dB 9dB 21dB Clean
27.2 34.1 38.0 40.8 42.5 43.5 44.1

Figure 3. Cocktail-Party-Processor Modi�cations
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4. VARIATIONS OF THE

COCKTAIL-PARTY-PROCESSOR

4.1. The Uninhibited Cocktail-Party-Processor

An Uninhibited Cocktail-Party-Processor can be produced
by eliminating inhibition in the running cross-correlation of
the Cocktail-Party-Processor. The Cocktail-Party-Processor
is based on the running, inhibited cross-correlation. This
has been discussed above in Section 2.3. Nevertheless, the
inhibition may be eliminated to produce an Uninhibited-
Cocktail-Party-Processor. The result is a binaural processor
based on the simple auditory model used by Bodden and
Anderson coupled with the running cross-correlation for bin-
aural fusion.
The Uninhibited Cocktail-Party-Processor was tested in

the same noise conditions as above with head adaptation
applied. The results are shown in Table 3. The results
are contrasted with Bodden and Anderson's cocktail-party-
processor [4] and the AIM-Cocktail-Party-Processor in Fig-
ure 3. The AIM-Cocktail-Party-Processor is discussed be-
low.

Table 2. BAIM: Head Adapted
% Correct vs SNR

-21dB -9dB -3dB 3dB 9dB 21dB Clean
28.3 35.0 39.0 41.2 42.8 43.2 43.3

Table 3. CPP No Inhibit & Adapted
% Correct vs SNR

-21dB -9dB -3dB 3dB 9dB 21dB Clean
22.8 27.0 30.2 34.6 37.5 40.9 43.7



4.2. AIM and the Cocktail-Party-Processor

The auditory image model and the binaural processor used
in the cocktail-party-processor can be combined to pro-
duce a AIM-Cocktail-Party-Processor (AIM-CPP). To visu-
alize this combination, replace the correlation process in
BAIM, see Figure 1, with the binaural processor used in
the Cocktail-Party-Processor.
The AIM-CPP was tested with two parameter sets in the

same noise conditions as before. The results are contrasted
with Bodden and Anderson's cocktail-party-processor [4] in
Figure 3. In the �rst series of tests, inhibition and head
adaptation were disabled. Head adaptation was not used
in this case because it was not clear how to determine the
head adaptation for this type of con�guration. (The numer-
ical results are shown in Table 4.) Next, the AIM-CPP was
tested using the exact parameters used by Bodden and An-
derson's cocktail-party-processor including the head adap-
tion normally used with the cocktail-party-processor. This
is called the Inhibited & Adapted case. (The numerical res-
ults are shown in Table 5.)

Table 4. AIM-CPP No Inhibit No Adaptation
% Correct vs SNR

-21dB -9dB -3dB 3dB 9dB 21dB Clean
27.5 34.1 38.1 41.2 42.6 43.3 44.6

Table 5. AIM-CPP Inhibited & Adapted
% Correct vs SNR

-21dB -9dB -3dB 3dB 9dB 21dB Clean
28.5 32.2 35.8 39.3 41.9 44.3 44.3

5. DISCUSSION AND CONCLUSIONS

BAIM meets or exceeds the performance of previous bin-
aural phoneme recognition systems for most signal-to-noise
ratios. Considering the seven noise conditions, BAIM per-
formed as well as CPP for -9 dB, -3 dB, 3 dB, 21dB and
clean cases based on the two sided t-test with a 95% con-
�dence level with nine degrees of freedom. In the 9 dB case
BAIM was signi�cantly better. In the -21dB case CPP was
signi�cantly better.
AIM-CPP, uninhibited and unadapted, meets or exceeds

the performance of previous binaural phoneme recognition
systems in four of the seven noise conditions without inhib-
ition and head adaptation. CPP is signi�cantly better for
the worst noise conditions: -21dB and -9 dB. AIM-CPP, un-
inhibited and unadapted, is signi�cantly better at 9 dB. In
the remaining cases, there is no signi�cant di�erence using
the same t-test as above.
The bene�ts of the running correlation are not apparent.

BAIM, without head adaptation, is not signi�cantly di�er-
ent from AIM-CPP without inhibition and head adapta-
tion. Since the running cross-correlation has many possible
weightings depending on the parameter T (See Equation 2)
a conclusive statement cannot be made based on the data
presented; nevertheless, the bene�ts of the running cross-
correlation are suspect.
Thus, BAIM, which combines the auditory image model

and stationary cross-correlation, produces a phoneme recog-
nition rate equal or better than the Cocktail-Party-Processor

for most signal-to-noise ratios. Also, the auditory image
model combined with a running cross-correlation without
inhibition performs nearly as well as the Cocktail-Party-
Processor. This demonstrates the bene�ts of binaural pro-
cessing in noise and the potential for further advances in
this area with sophisticated auditory models. Future work
will incorporate the auditory image model with a new fusion
technique based on coincidence detection of neural activity
patterns.
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