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ABSTRACT

In an e�ort to improve recognition performance of
talker-independent speech systems, many adaptive methods
have been proposed. The methods generally seek to exploit
the higher recognition performance rate of talker-dependent
systems and extend it to talker-independent systems. This
is achieved by some form of placing talkers into several cat-
egories, usually using gender or vocal-tract size. In this
paper we investigate a similar idea, but categorize each ut-
terance independently. An utterance is processed using sev-
eral spectral compressions, and the compression with the
maximum likelihood is then used to train a better model.
For testing, the spectral compression with the maximum
likelihood is used to decode the utterance. While the spec-
tral compressions divided the utterances well, this did not
translate into signi�cant improvement in performance, and
the computational cost increase was signi�cant.

1. INTRODUCTION

Research in improving the performance of speech recogni-
tion systems is ongoing. Despite the successful applica-
tion of Hidden Markov Models (HMM) for the back-end
of speech recognition systems, the search for an optimal
feature-set is still a fundamental problem. The feature-set
is important since it is supposed to enhance the semantic
discriminating information of the speech signal that will be
available to the back-end. If the feature-set is more dis-
criminating, the expected recognition performance should
be higher.
Various methods have been used in the attempt to im-

prove the performance of talker-independent systems. They
are generally called adaptive systems. Adaptive systems of-
ten use talker-dependent methods to improve performance
of talker-independent systems. Several approaches have
been investigated but they usually categorize the talker into
one of several groups [1, 2, 3], with the simplest grouping
being to divide talkers by gender into male and female. For-
mant shape, pitch location, or some other characteristic of
the speech signal is used to categorize the talker and select
a model for recognition.
In [4] we proposed a parameterized warped feature-set

for an HMM-based speech recognition system. The warped
feature-set outperformed an LPC mel-cepstrum feature-set.
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In particular, a certain combination of parameters o�ered
the best performance for the whole talker-independent sys-
tem. In this study, we attempt to see if the parameterized
warping may be used in an utterance-dependent fashion.
Secondly, we want to use features computed from di�er-
ent warpings to make a single HMM-model. We evaluate
whether the performance of this model will be di�erent from
that developed from a single spectral warping, as is usually
the case. Thus the system would use some form of spectral
adaptation to utterances in both the training and test set.
This is di�erent from many talker normalization methods
in which normalizations are based on the talker rather than
the utterances. Hence, techniques such as pitch or formant
analysis were not used in the proposed method.
The feature-set is computed as before, and the likelihood

from the HMM model is used to estimate the suitability
of the spectral warping to the utterance. The idea of us-
ing likelihood for vocal-tract normalization is not new, see,
e.g. [1]. To evaluate our approach, we �rst experiment with
a discrete HMM-based system, as it speeds up our exper-
iment. However, due to the vector-quantization process,
the discrete system is not ideal. The resource-costly semi-
continuous system is really preferable, since it models the
observations directly, but to expedite the experiment, it was
not used here.

2. THE PARAMETERIZED FEATURE-SET

The (�,�) feature parameterization was �rst discussed in
[4, 5] in which a model is speci�ed by two values (�,�).
The advantages of the parameterization is that the e�ect
of spectral compression can be calculated. Unfortunately
the calculations are compute-intensive, requiring about 120
hours of CPU time per (�,�) for the discrete system. Using
the (�,�) parameterization, it was shown that the spectral
compression that approximated mel-scale yielded the best
recognition performance. This veri�ed that mel-scale com-
pression is indeed better for talker-independent tasks which
is already widely accepted. The � and � parameters are re-
lated by the equation

A

�X

i=1

�
i�1 = N=2; (1)

where N is the size of a DFT spectrum and A is a constant
greater than 1. The parameters � and � can be chosen
independently, subject to Equation 1, to achieve a desired
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Figure 1. Spectral warping with � = 8:0.

spectral compression. In the previously reported experi-
ments [4, 5], � was limited to be between 4 and 10 and
� was limited to be between 1 and 2. Mel-scale compres-
sion is approximated when � = 8:0 and � = 1:5. Fig-
ure 1 shows the spectral compression when � = 8:0 and
� = 1:0; 1:25; 1:5; 1:75; and 2:00. It should be noted from
Figure 1 that spectral compression is more sensitive to
changes in � below 1:5 than above, due to the nonlinearity
of Equation 1. In this study an investigation is made to see
if the parameterization is in fact utterance-dependent. Al-
though it is generally expected that the dependence would
be talker dependent, this condition is not enforced. Thus
each utterance is treated independently. The rationale is
to �nd out what kind of model would be generated, and,
hopefully, what can be learned from such a model.

3. EXPERIMENTAL TECHNIQUE

3.1. Experimental Set-up

Experiments are performed on a connected, alphadigit,
talker-independent HMM-based recognition system. The
vocabulary consists of the English alphabet (A � Z), ten
digits (0 � 9), and control words SPACE and PERIOD.
This vocabulary is ideal for testing the discriminating power
of the feature-set due to highly confusable words such as in
the E-set (B, C, D, E, G, P, T, V, Z, 3), the A-set (A,
H, J, K, 8), the nasal-set (M, N), and other word com-
binations. Most of the di�erences among the E-set words
arise from the initial consonants; for example, the words
(B,D) are the voiced counterparts of the unvoiced conso-
nants (P,T) respectively. On the other hand B, D and G
di�er based on the place of articulation. These short-time
di�erences make the E-set highly confusable. There are sim-
ilar consonantal di�erences in the A-set and the nasal-set.
There is a total of 38 words in the database, and since the

recognizer does not use a grammar, it has a perplexity of 38
(actually a little higher due to silences) which is higher than
for many large vocabulary systems using bigram or trigram
language models. The database consists of speech from 80
male and 40 female native American-English talkers with
about 12 hours of speech. It is divided into training (80
talkers), "test and modify" (20 talkers), and testing sets
(20 talkers). The features for the HMM-based back-end are
classi�ed using three independent codebooks. The code-
books are 1) the direct cepstral coe�cients cn, 2) cepstral
di�erence coe�cients, and 3) energy and its di�erence. The
di�erence coe�cients are computed by taking the di�erence

of direct coe�cients of two frames that are a frame apart.
The HMM uses explicit-duration modeling techniques to
improve recognition performance. A K-means vector quan-
tization is used to classify into 256 classes for each of the
codebooks.
The best recognition performance obtained on this

database has an error rate of 8.2% for the semi-continuous
HMM-based system and about 12% for the discrete system.
Both error rates were obtained without the use of language
models. This high error rates indicates there is still room
for improvement in either the feature-set or the back-end.

3.2. Algorithm

The advantage of using Hidden Markov Models in the back-
end of the system is the mathematical tractability of the
algorithm. In [6] three problems are stated and the �rst
problem is relevant to the algorithm proposed here. The
problem is how to e�ciently compute P (Oj�), the proba-
bility of the observation sequence O = (o1; o2; :::; oT ) given
the model � = (A;B; �). The method used to compute the
probability is called the forward-backward algorithm. In the
forward path the forward variables �t(i) (not to be confused
with � and � of the feature-set parameterization; the pa-
rameterization variables do not have subscripts), is de�ned
as

�t(i) = P (o1; o2; :::; ot; qt = ij�) (2)

that is the probability of the partial observation sequence
(o1; o2; :::; ot) up to time t and being in state i given the
model �. The backward variable �t(i) is de�ned as

�t(i) = P (ot+1; ot+2; :::; oT ; qt = ij�) (3)

where T is the number of observations in an utterance. The
advantage of these de�nitions is that the probability of be-
ing in state i can easily be computed. Of interest to us here
is the observation sequence O = (o1; o2; :::; oT ). The obser-
vation sequence depends on the front-end signal processing,
which also determines the space of the features.
By varying the values of the (�;�) pair the observation

sequence is a�ected, which in turn a�ects the forward and
backward variables. Using the above de�nition for �t(i) it
can be seen that �T (i) is the probability that the whole
observation sequence is produced by the model �. A higher
value of �T (i) therefore gives the likelihood that observa-
tions O (and in turn the parameterizations) are more suit-
able to the model �. Usually for talker-independent sys-
tems, without any adaptation, a single best compression
may be found for all the talkers in the training set. In [4] we
showed that mel-scale compression is a good choice in such
applications. On the other hand, for adaptive systems some
characteristic of the talker may be used to categorize all the
talker's utterances into some class. Both methods have been
applied successfully. In this paper, we are proposing a novel
method where there are no categories used other than the
likelihood of an utterance to select a particular parametric
warping. It is, of course, expected that utterances from a
single talker will have a similar or nearly similar warpings,
but this is not enforced.
The system determines the warping factors based only

on the utterance. Figure 2 shows the algorithm for train-
ing and testing. In order to make the problem manageable,
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Figure 2. The algorithm for training and testing.

the value of � = 8 was �xed, and likelihoods computed for
various � values. For training only, the � value produc-
ing the highest likelihood was included, and the resulting
parameters contributing to the common model. The next
iteration model � is then composed of the best warpings of
the previous model. Our initial expectation was that the
warpings will cluster near � = 1:5. We expected to learn
from any di�erences. For testing, each utterance was run
through the common model and that with the highest like-
lihood accepted as the recognized string.

3.3. Computational costs

It is evident that our idea would have been tested better
if a continuous HMM-based system had been used, and it
was our intention to apply the algorithm on such a system.
However, to compute one value in the parametric space re-
quired over 120 CPU-hours for the discrete system, while for
the semi-continuous system it requires 480 CPU-hours[5].
In addition the algorithm we are proposing requires that
a single point be computed for each � value, dramatically
increasing the CPU-time by the number of di�erent �'s to
be computed. We were thus compelled to experiment with
only the sub-optimal discrete system. There is further work
to see if the best parameterization can be determined before
the computations are to be done. If this works out, it will
enable experiments on a continuous HMM-based system.

4. EXPERIMENTS

This section describes the results of the experiments per-
formed using the proposed algorithm. Pseudo-random num-
bers are used to initialize the zeroth model. The �rst it-
eration model is trained from the zeroth model. Several
utterances from talkers in the training set are used to gen-
erate the codebooks. Three codebooks are generated as
described earlier. Two methods were used to select the
feature-sets to generate codebooks. In the �rst method,
codebooks were developed from observations for spectral
warpings of � = (1:1; 1:3; 1:5; 1:7; 1:9). This was done to
remove any bias towards a particular value of �. When the
results of the spectral warpings showed preference to 1:7 and
1:9, we thought the results could have been inuenced by
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Figure 3. Warping selected for utterances of a fe-

male talker through iteration 1 to 3.
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Figure 4. Warping selected for utterances versus

gender through �rst two iterations.

the mixture of the spectral warpings in the codebooks. The
experiment was repeated with codebooks that were used to
generate previously reported results in [4] where � = 1:5.
The same results were obtained, indicating that the code-
books did not a�ect the results.
The model training program was modi�ed to read PCM

�les and generate features using various values of �. This
meant that more resources are required to compute the fea-
tures and vector quantize them on the y. The warping fac-
tor � with the maximum likelihood was recomputed, and its
parameters contributed to making the next iteration model.
In this way, only the most likely features (warpings) of an
utterance are used in building the model. Figure 3 shows
which warping factors of � = 1:1; 1:3; 1:5; 1:7; and 1:9 were
selected in the �rst three iterations from a pseudo-random
model for a female talker. Essentially, by the second itera-
tion 88% of her utterances have selected � = 1:7 as the best
compression.
The results in Figure 3 are typical for females in the

database. For most males, by the second iteration almost
all the utterances have selected � = 1:9. The selected �

spacing is too coarse to show what is taking place between
1.7 and 1.9. Figure 4 shows the percentage of utterances
selecting a � value based on gender during the �rst two
iterations.
After the spread on the compressions was determined,
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Figure 5. Warping factors selected for utterances

using only male talkers.
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Figure 6. Recognition system taking advantage of

utterance dependent warping

further experiments were performed on the database. In-
stead of training a model with both male and female talkers
in the utterance-dependent warping algorithm, they were
separated. Figure 5 shows the � spread for data trained
only on male talkers in the training set. The �rst iteration
of Figure 5 is as expected, since the model is not particularly
set to any spectral compression. By the second iteration, an
interesting phenomenon happens: almost half of the utter-
ances selects the � value below 1.5 and the other half select
above. Also to be noted the value of 1.5 itself is hardly se-
lected. The third iteration is not shown, but by the fourth
iteration the spread is similar to the one that was obtained
when both the male and female talkers were included in
the training set. This shows that somehow when the � is
allowed to vary higher values are selected.
After four iterations the new model had a performance of

86.0%. This is slightly better than LPC mel-cepstrum per-
formance of about 85.8% but 2% less than the reported[4]
performance of the parameterized front-end. However, mel-
cepstrum and parameterized results were from the twenty-
fourth iteration model. Thus this performance is expected
to increase. But it should also be noted that about the same
amount of work is spent on the four iterations in the pro-
posed algorithm as in the twenty-four of [4]. The � spread
between male and female talkers can be exploited by using
a recognition system as shown in Figure 6. Whether the
utterance is evaluated at a speci�ed � will depend on the
likelihood. This system is not tested as yet.

4.1. Conclusions

This is work in progress, and more results will be reported at
the meeting. The next step is to investigate the warping fac-
tor space � between 1.7 and 1.9, and to compute the results

on the semi-continuous system. The advantage of a semi-
continuous system is that speech features (observations) are
used directly to compute the HMM model parameters. This
should give a better performance and test of the proposed
method. We have achieved our initial goal of investigating
whether the spectral compression is utterance dependent.
While most female utterances selected � = 1:7, over 30%
selected � = 1:9, as did most of the male utterances.
The advantage of the proposed system is that no classi-

�cation of the talker is required, but the utterances them-
selves are used to obtain an optimal model. The disad-
vantages, however, are signi�cant. Based on the results of
the discrete HMM-based system, it seems the cost of the
algorithm is excessive and not worth the small projected
performance increase.
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