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ABSTRACT

This paper describes an extended subband-crosscorrela-

tion(SBXCOR) analysis to improve the robustness against

noise. The SBXCOR analysis, which has been already pro-

posed, is a binaural speech processing technique using two

input signals and extracts the periodicities associated with

the inverse of the center frequency(CF) in each subband.

In this paper, by taking an exponentially weighted sum of

crosscorrelation at the integral multiples of the inverse of

CF, SBXCOR is extended so as to capture more periodici-

ties included in two input signals. The experimental results

using a DTW word recognizer showed that the processing

improves the performance of SBXCOR for both that of the

white noise and a computer room noise. For white noise, the

extended SBXCOR performed signi�cantly better than the

smoothed group delay spectrum and the mel-frequency cep-

stral coe�cient(MFCC) extracted from both monaural and

binaural signals. However, for the computer room noise, it

outperformed only at SNR 0dB.

1. INTRODUCTION

In any speech recognition system, the speech analysis part

is the front-end for the acoustic environment, and the acous-

tic features lost in this part cannot be easily recovered in any

later stage. Especially, for constructing a robust recognition

system used in real acoustic environments where noise, re-

verberation and the other interferences signi�cantly a�ect

the acoustic signal, the acoustic front-end has to be robust

against such inuences and extract e�ective speech features.

In order to address the problem, we have proposed sub-

band-autocorrelation(SBCOR) analysis[1]. The SBCOR is

a kind of �lter bank analysis, and aims to extract period-

icities associated with the inverse of the center frequency

included in speech signals. The experimental results for

speech recognition showed that SBCOR performs better

than the conventional method under noisy conditions.

Furthermore, as an extension of SBCOR, we have pro-

posed subband-crosscorrelation(SBXCOR) analysis using

binaural signal to improve the performance of speech recog-

nition under noisy conditions[2]. Speech feature extraction

by such binaural processing is also a current topic in re-

cent studies related to the auditory modelling, and several

binaural processing models have been proposed to improve

the recognition performance under the adverse conditions

and shown the e�ectiveness [3][4][5]. Unlike those binaural
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Figure 1. Concept of SBXCOR analysis.

auditory models, SBXCOR is a signal processing method

based on �lter bank and crosscorrelation analysis.

In this paper, in order to improve the robustness of the

SBXCOR, multi-delay weighting(MDW) processing[6] that

utilizes more periodicities included in binaural signal is in-

corporated in SBXCOR analysis.

This paper is constructed as follows. The following sec-

tion reviews SBXCOR analysis and introduces the multi-

delay weighting processing. Section 3 investigates the ro-

bustness against white noise and a computer room noise

under simulated acoustic conditions on computer. Section

4 summarizes this research.

2. SBXCOR ANALYSIS AND MDW
PROCESSING

2.1. SBXCOR Analysis

SBXCOR analysis is a binaural speech processing tech-

nique using two input signals, and extracts the periodicities

associated with the inverse of the center frequency f�1cfi
in

each subband. The ith SBXCOR coe�cient Sc(�cfi ; n) for

nth analysis frame is calculated as follows:
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where Ri
x1x1

(�; n), Ri
x2x2

(�; n) and Ri
x1x2

(�; n) are the au-

tocorrelation and crosscorrelation functions of ith subband

signal respectively, and Fx1(f; n) and Fx2(f; n) are the FFT

spectrum of two input signals x1(t; n) and x2(t; n) respec-

tively.

As for the �lter bank, a �xed Q �lter bank whose cen-

ter frequencies are equally spaced on the Bark scale has

been shown to be suitable for speech recognition under noisy

conditions so far[1]. In the following experiments, the �lter

bank consists of 16 �xed Q gaussian bandpass �lters(BPFs)

de�ned by
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where

Ci =
2Q2 ln 2

f2cfi

: (7)

The robustness of SBXCOR against noise can be ex-

plained as shown in Figure 1. Since the speech signals

recorded by two microphones, which are uttered just in

front of two microphones, have the same amplitude and

phase, SBXCOR extracts the same spectrum as SBCOR.

On the other hand, since noises are low correlation, their

inuences are canceled in the processing. In the following

experiments, we investigate the performance of SBXCOR

under the assumption that speakers utter just in front of

two microphones.

2.2. Multi-Delay Weighting

If both of binaural signal are periodic with a period T, the

crosscorrelation coe�cients show several peaks at integral

multiples of T. In conventional SBXCOR analysis de�ned

by Equation (1), however, only one crosscorrelation coef-

�cient at T is used to extract the periodicity included in

the subband signal. Therefore, we extend the SBXCOR to

capture the other peaks of the crosscorrelation coe�cients

by taking a weighted sum of them with the power of �, i.e.

the exponential weighting(Fig.2) as follows:

Ŝc(�cfi ; n) =
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k=0

�
k

(8)

(0 < � < 1): (9)

We have referred to it as multi-delay weighting(MDW)

processing[6]. The MDW processing has been shown to be

e�ective in SBCOR analysis[6].
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Figure 2. MDW weighting.
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Figure 3. Interpretation of the MDW in frequency
domain.

2.3. The E�ect of MDW

Figure 3 shows the interpretation of MDW in the fre-

quency domain as a weighting for the cross-spectrum of the

binaural signal[6]. As shown in the �gure, byMDW process-

ing, the frequency resolution and the Mexican hat weighting

of SBXCOR are controllable. The frequency resolution is

higher as � is closer to one. On the other hand, the em-

phasis of spectral contrast by the Mexican hat weighting is

lower as � is closer to one. The contribution of these e�ects

to recognition performance will be experimentally shown in

the following recognition experiments.

3. EXPERIMENTS

In this section, the robustness of the proposed method

against white noise and a computer room noise is evaluated

using a DTW word recognizer. From the experiment, the

following points will be clari�ed:

1. how much the proposed method improves better than

the conventional SBXCOR,

2. as a processing method using 2 channel signals,

whether the proposed method is more e�ective or not

than the delay-and-sum processing usually used in the

multi-microphone system,

3. to what extent the performance of the proposed

method is better than those of the smoothed group de-
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Figure 4. power spectrum of a computer room
noise(3 seconds).

lay spectrum(SGDS)[7, 8] and the mel-frequency cep-

stral coe�cient(MFCC)[9].

3.1. Experimental Conditions

3.1.1. DTW word recognizer

A standard DTW speaker-dependent isolated word rec-

ognizer is used. The recognition task is a 68 pair discrimi-

nation[7]. Each pair is a phonetically similar city name pair,

selected from a 550 Japanese city name database recorded

twice by 5 Japanese male speakers. The �rst set is used as

the reference pattern and the second set, which was spoken

a week later, is used as the test pattern.

3.1.2. Noisy Signals Used in Test

As for white noise, two gaussian white noises generated by

di�erent seeds are added to the test signals. Furthermore,

as a realistic environmental noise, the noise in a computer

room was recorded using three microphones and added to

the test signals on computer. The distance between mi-

crophones is 10cm. The computer room noise is a non-

stationary noise and its power spectrum is shown in Figure

4. The left and right channel signals are used as two chan-

nel signals, and the middle channel is used as one channel

signal. In all cases, the global signal-to-noise ratios(SNRs)

were set to be 20, 10, 5 and 0dB.

3.1.3. Two-Channel-Summed Signal

The two-channel-summed signals are generated by

simple-summation of the above two channel signals because

of no delay between two channel. By doing this, the e�ec-

tive SNR improvement is about 3dB.

3.1.4. SBXCOR

The Q values of 1.0, 1.5, 2.0, 2.5 and 3.0 are investigated.

FFT-point is 1024. In order to calculate coe�cients of the

correlation function precisely, polynomial interpolation was

used. The center frequencies of the BPFs are equally spaced

on the Bark scale between 4 and 17 Bark. In MDW pro-

cessing, the �s of 0.0-0.9 are investigated.

3.1.5. SGDS and MFCC

SGDS has been shown to be robust against noise, and

it is calculated as the derivative of phase of a pth order all

pole �lter that has smoothed poles. In order to compare the

performance of SBCOR with that of SGDS under exactly

the same conditions, the analysis frequency points of SGDS
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Figure 5. Comparison with SBXCOR with and
without MDW(White Noise).
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Figure 6. Comparison with SBXCOR with MDW,
SGDS and MFCC(White Noise).

were chosen to be the same as the center frequencies of

SBXCOR.

MFCC is a commonly used speech feature in speech rec-

ognizers. In this experiment, MFCC is calculated using a

28 triangular shape mel-�lterbank.

As for the other common analysis conditions, the analysis

frame length and shift are 20ms and 10ms respectively, and

the dimension of each feature is 16. The sampling rate is

10 kHz.

3.2. Experimental Results

3.2.1. The Robustness Against White Noise

Figure 5 shows the best recognition rates of SBX-

COR(Q=2.0) processed by MDW and SBXCOR without

MDW. These results indicate that MDW improves the per-

formance of SBXCOR, and the equivalent SNR improve-

ment is about 6dB at SNR 0dB. The �s for reference and

test patterns were 0.5 and 0.0 respectively. It indicates that

the Mexican hat weighting centered at CF is important to

improve the robustness against the white noise. Further-

more, as shown in Figure 6, SBXCOR with MDW outper-

forms SGDS and MFCC below SNR 10dB.
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3.2.2. The Robustness Against Computer Room Noise

Figure 7 shows the best recognition rates of SBX-

COR(Q=2.0) processed by MDW and SBXCOR without

MDW. As shown in the �gure, MDW also improves the per-

formance of SBXCOR for the computer room noise. How-

ever, the equivalent SNR improvement was less than the

case of the white noise, and it was about 3dB at SNR

0dB. This result indicates that the robustness of SBXCOR

against noise depends on the degree of correlation between

noises in each channel. The �s for reference and test pat-

terns were 0.7 and 0.4 respectively. It indicates that nar-

rower frequency resolution is important under the computer

room noise than under white noise.

Furthermore, as shown in Figure 8, although SBXCOR

with MDW outperforms SGDS and MFCC extracted from

one channel signal below SNR 10dB, it only performs better

those extracted two-channel-summed signal at SNR 0dB.

As shown in these results, in the case of the simulated

acoustic conditions that the speech signals in each channel

are perfectly synchronized, the performance of SBXCOR

with MDW is not necessary better than those of SGDS

and MFCC extracted from the two-channel-summed signal.

Such a situation, however, is not realistic. Therefore, it is

necessary to investigate the performance when the speech

signal in each channel are not synchronized.

4. SUMMARY

In this paper, we introduced the multi-delay weight-

ing(MDW) processing in SBXCOR analysis so as to uti-

lize more periodicities included in binaural signal. The ex-

perimental results using a DTW word recognizer are sum-

marized as follows:(1) the MDW processing improves the

performance of SBXCOR for both of white noise and a

computer room noise, (2) for white noise, SBXCOR with

MDW performs signi�cantly better than SGDS and MFCC

extracted from monaural and binaural signals, (3) for the

computer room noise, SBXCOR with MDW outperforms

SGDS and MFCC extracted from monaural signal below

SNR 10dB, but it only outperforms SGDS and MFCC ex-

tracted from binaural signal at SNR 0dB. From these re-

sults, we conclude that MDW processing is e�ective, but

the degree of improvement depends on the kind of noise.
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