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ABSTRACT

Although thepossibility of asynchrony between different
components of thespeech spectrumhas been
acknowledged, its potentiaffect onautomatic speech
recogniser performandeasonly recently been studied.
This paper presents the results aantinuous speech
recognition experiments in which such asynchrony is
accommodated using\ariant ofHMM decomposition.
The paper begins with an investigation of #ffects of
partitioning the speech spectrum explicitly intsub-
bands. Asynchronyetween these sub-bands tfen
accommodated, resulting in a significant decrease in
word errors. The samalecomposition technique has
previously been used successfully to compensate for
asynchrony betweethe two input streams in an audio-
visual speech recognition system.

1. INTRODUCTION

A factor whichhasbeen noted by some researchers in
the acoustic-phonetic field is thepossibility of
asynchrony betweethe different components of the
acoustic parameterisations whiahe typically used for
automatic speech recognitiorhis asynchrony may be
due to a number of factors, for example underlying
asynchrony between differeparts of the humaspeech
production system, or asynchrony introduced by a
communication channel.  Convention&lMM-based
approaches to automatic speech recognition use model
states which arassociated with complete synchronous
feature vectorand aregherefore unable to accommodate
these effects. One possible solution is to construct
independent sub-band HMMs, to conduct separate
classification experiments by applying thad®Ms to

the appropriate sub-band representation of sheech
pattern, and t@wombinethe separate results [1]. This
paper presents the results of an investigation into an
alternative strategy to determine theffects of
accommodating asynchrony between the upper and lower
frequency bands d¢he speech spectrum usimgtegrated
models based on HMM decomposition [2].

This approach can bgewed as an elementary form of
single-signal decomposition (SSD) [3] - the
decomposition of a speectsignal into parallel
asynchronous components, corresponding, for example,
to the states of the principal articulators in thxal
tract. Such an approach extends the conventional HMM
framework by attempting to model the underlysmpech
production processather tharsimply represent detailed
surface behaviour [4]. The proposed methodias the
potential tooffer significant advantages for automatic
speech recognition by reducinthe reliance on an
explanation of variations in speech production in terms
of random behaviour [5].

2. EXPERIMENTAL METHOD AND SPEECH
DATA

The speechdata used for training and testing was
derived from an in-house speaker-dependent sofl
ARM (Airborne Reconnaissance Missidagk [6]. This
was chosen because a corpus of mian 15,000
results already existed with which any new resciisld
be compared. Each speaker (2 maltsmale) provided
36 ARM reports fortraining and 10for testing, giving
totals of 1991 and 541 words respectively.

The speech, sampled at 20 ks/seas analysedsing a
400 point DFT. A Hammingvindow was usedvith a
50% overlapand thebottom 160 DFT coefficientaere
selected. This provided spectral estimates of the d.c. to 8
kHz band at a frameate of 100 frames/second. The
speech recognitionsystem was based on 3-state
monophone (context-independent) HMMs, plus four
single-state, non-speech HMMs. Single component,
continuous density, Gaussian statgere usedand a
citation form pronunciation dictionanyas employed for
training, recognition and scoring.

All data was annotated orthographically, with timing
markers provided at the boundaries of breath groups for
training dataonly. The recognitiorsystem used was a
conventional one-pass Viterbi decoder witheam



pruning and partialtraceback [6, 7, 8]. Neither
language model nor syntactic constrainese employed.

The resulting recognised output stringgere scored

using a phone-mediatedord alignment algorithm, with

all word errors being reported.

3. SUB-BAND REPRESENTATIONS FOR SPEECH
RECOGNITION

In order to investigate asynchrony between the upper and
lower frequency bands dhe speech spectrum, it is
necessary to specifiie frequency at whiclthe spectrum
should be split. Also, since the spectrumtyipically
cosine transformegrior to speech recognition, splitting
into two sub-bands allowthe cosine transform to be
applied separately to each band. The resulting feature
vector isthe concatenation of the/o vectors of sub-
banded cosine coefficients. imew of the non-linear
nature ofspeech with respect to frequentyis in itself

may lead to performance improvements. h#s been
shown elsewhere [lthat this multi-band approach can
also provide a degree of robustness to narrow-band
interfering noise.

The composite feature vectoo’;, at timet is a K
dimensional vector obtained frothe cross-product of
the vector of upper-band cosine coefficientswith the
vector of lower-band cosine coefficientsas follows:

0% =0% 0 o}

where the cross-productis defined by:
0w =0%, k=1, ...,U
0%u+k = O, k=1, ..., L

where Uand L are th@umbers of dimensions of the
upper-andlower-banddata respectively.

Sets of sub-band phoneme-level HMMs were constructed
in which the underlying Markov modéebpology for a
particular sub-bantHMM wasthe same athat for the
corresponding conventional HMM. A left-to-right
topology with no state skipping was used.

4. ASYNCHRONY BETWEEN FREQUENCY
BANDS

Asynchrony betweerthe uppernd lower frequency
bands can beaccommodated using either HMM
decomposition [9, 10] or parallel model combination
(PMC) [11] which is computationally more efficient.
The latter approaclwvas used ahe phoneme-level in
this study. The principle disadvantage of PMC applied
in this way isthat it only allows within-phoneme
asynchrony, since model entaynd exit is synchronised

betweenthe two streams. Apart fronthis PMC and
HMM decompositionare functionally equivalensince
the combination function isimply vector concatenation.
Previouslythis approach habeen used successfully to
accommodate asynchrony betwdée two components
of an audio-visual speech recognition system [12].

Separate upperand lower-band phoneme-levélMMs
were constructed frorthe corresponding components of
the synchronous sub-bandMMs. The underlying
Markov model topologies weréhe same afor the
corresponding sub-band HMMandfor each state of the
upper-band HMM, the mearvector and diagonal
(co)variancematrix were set to be equal the upper-
band of the meawector and covariance vector of the
corresponding synchronous sub-band HMWhe lower-
bandHMMs were constructed analogouslyhe upper-
and lower-band HMMs foreach phoneme werthen
compiled into single PMC models [11]. More formally,
the asynchronouamodel meanvector pu”; and variance
vectord®; and theelements %, js of the state transition
matrix A® were computed frorthe relevantomponents
of thesynchronousnodel as follows:

WP =P O
dpir = dui D dlr
aDir, is = Efij drs

wherelJ represents the cross-product as described earlier
and stateir corresponds to state of the upper-band
component in the synchronous modeld stater of the
lower-bandcomponent.
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Figure 1: Asynchronous 9-state PMC model

The allowed state sequencestbé asynchronous 9-state
modelare shown in Figure 1, where the horizontal and
vertical time axes representsspectivelytransitions in
the states of the uppeend lower-bands. Diagonal
movement indicates simultaneous transitions in the two
bands. Figures and 3 illustrate the relaxatiabtained



when an asynchronousMM topology is employed to
model a single phone.
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Figure 2: Conventional modelling using synchronous
sub-band structure

Figure 3: Decomposition using asynchronous PMC
model

5. EXPERIMENTS AND RESULTS

A large set of experimentsas conducted to investigate
the effects ofthe choice of splittingfrequencyand the
numbers of cosine coefficients used to represent the
upper-and lower-frequency bands faynchronoussub-
band HMMs. Reference resultare provided for the
single 8 kHz bandand afeature vector of 30 cosine
coefficients plus one energgrm. Not surprisingly, the
optimal frequency which separatbe upperandlower-
bands varies between speakerExperimental results,
shown in Table 1, indicate an improvement in
recognition accuracy fahetwo male speakers when the
spectrum is split intdwo bands at 4 kHz. Theystem
used 25and 4cosine coefficients plusvo energyterms

to describe the lower and upper bands respectively.

Increasing the splirequency improvethe performance

of the female speaker ahe expense othe two males,
howeverall sub-bandresults shown here afer a 4 kHz
split. Experiments have also been conducted in which
the frequency axis is partitionedto three bands, but as

yet performance for clean speech is no betiem that
achieved with two bands.

The investigation of the asynchronausdels was made
more complex bythe interaction of the PM@rocess
with HMM parameter trainingsince it can be applied to
the initial HMMs before sub-banding, thesub-band
HMMs, the individual upperandlower-band HMMs or
to thecombined PMC HMMs. Irterms of synchrony,
these correspond, respectively, {® synchronous
training of the upper- and lower-band HMMs, (ii)
asynchronoustraining of these modelsand (i) a
compromise between these two extremes.

All of these factors havéeen investigatethrough an
extensive programme of experiments usingaage of
two-band representationsand 9-state monophone
HMMs. The best results from these experiments are
between 2%and 4%better than the corresponding
synchronous results in absolute ternfggain there was
variationbetween speakers - duepart to thenumbers

of cosine coefficientsepresenting each barahd also
due to the differentraining schemes employed. It was
found to be detrimental to re-estimate the parameters of
the upper-and, to alesser extent, lower-bandMMs
separately. This is becausethe upper-bantiMMs do

not contain sufficient information in themselves to
guarantee a meaningful alignment of tH&Ms and
speechdata during training. By contrastvitas found to

be beneficial tarain the PMC HMMSs,indicating that
while the PMCHMMSs allow some asynchrony, thetill
enforce sufficient synchrony to ensurga@odalignment
betweenthe HMMs and training data during parameter
re-estimation. The results in Table 1 indicate wenrr
rate reductiondor asynchronous models of 29% and
22% forthe male speakeend 19% forthe female, in
relative terms, when compared to the resdidts the
corresponding synchronous models. These improved
results arefor a 31 dimensional representation and
models trained for 10 iterations froninitial PMC
creation.

Three band asynchronous PMC models have lzdsm
investigated, buagainthey havenot performed awell

as thetwo band PMC models to-date. litas already
been notedhat theasynchronous behaviour in the PMC
approach is constrained by the requirem#mt the
component streams are synchronisednaadlel entry and
exit (i.e. at phone boundaries). This carobsercome by
extending theHMM topology to allowmore model entry
and exit states. However, benefits interms of
recognition performance have been small.



Data representation Model configuratiop Word error rate, %
Male-M Male-R Female-S
Single band, 30 CC + 1 E 3-state 30 iterations from initialisation 11.1 16.3 12.8
Two band, 25+4 CC + 2 E 3-state synchronols 30 iterations from initialisation 8.3 15.3 13.5
Two band, 25+4 CC + 2 E  9-state asynchrongus 10 iterations after PMC creatiob.9 12.0 10.9

Table 1: Speaker-dependent recognition results for a 500-word continuous-speech task

[6] M J Russell, K M Ponting, S M Peeling, S R
Browning, J S Bridleand R KMoore. “The ARM
continuous speech recognition system”,
Proceedings of IEEE ICASSRI|buquerque April
1990.

6. CONCLUSION

The use of two-band analysis of speeem provide an
improvement in recognition performance.  Further
improvement are obtained by accommodating
asynchronous behaviour in ttepeechsignal using a [71 J S Bridle, M D Browrand R M Chamberlain, “A
technique whichdecomposeghe speech into separate One-Pass Algorithm for ConnectedWord
components.This single-signatlecomposition approach Recognitiofi, Proceedings of IEEE ICASSParis,
provides a method which better modéie underlying 1982.

speech production process. More work is required to
model the asynchrony across phonemand word
boundaries. In addition, a more principled strategy is
required for providing optimal frequency-band
partitioning for each speaker or set of speakers.

[8] K-F Lee, “Large Vocabulary Speaker Independent
Continuous Speech Recognitiorthe SPHINX
System”,PhD thesis,Carnegie Mellon University,
1988.

[9] A P Varga and R K Moore, “Hidden Markaewodel
7. REFERENCES decomposition of Speeand Noise”, Proceedings

[1] H Bourlardand S Dupont, “mew ASRapproach of IEEE ICASSPAlbuquerque, April 1990.
based on independent processing and [10] M Kadirkamanathan,“Hidden Markov Model
recombination of partial frequency bands” Decomposition Recognition of Speech in Noise: A
Proceedings of ICSLRPhiladelphia, October 1996. comprehensive experimentatudy’, Proceedings

[2] R K Moore, “Signal decomposition usifgarkov ngiiiéom?{ilé‘jgieanfepriﬁg? 1;9rgcessmg n
modelling techniques’"RSRE Memorandum 3931, ' '

1986. [11] M J F Galesand S Jvoung,“HMM recognition in
noise using Parallel Model Combination”,
Proceedings of EUROSPEECRBerlin, September
1993.

[12] M J Tomlinson, M J Russetind N MBrooke,
“Integrating audio and visual information to
provide highly robust speech recognition”,
Proceedings IEEE ICASSRtlanta, May 1996.

O British Crown Copyright 1996/DERA

[8] R K Moore, “Critique:The potential role afpeech
production models in automatic speech
recognition”, JASA vol. 99March 1996.

[4] M J Russell, “Advances in speech recognition”,
Proceedings of 10A Conf. on Speech and Hearing,
Windermere, November 1996.

[5] R K Moore, “Twentythings we still don’tknow
about speech”Proceedings of CRIM/FORWISS
Workshop on ‘Progress and Prospects of Speech
Research TechnologyMunich, September 1994.

Published with the permission of the controller of
Her Britannic Majesty’s Stationary Office



