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ABSTRACT

Although the possibility of asynchrony between different
components of the speech spectrum has been
acknowledged, its potential effect on automatic speech
recogniser performance has only recently been studied.
This paper presents the results of continuous speech
recognition experiments in which such asynchrony is
accommodated using a variant of HMM decomposition.
The paper begins with an investigation of the effects of
partitioning the speech spectrum explicitly into sub-
bands.  Asynchrony between these sub-bands is then
accommodated, resulting in a significant decrease in
word errors. The same decomposition technique has
previously been used successfully to compensate for
asynchrony between the two input streams in an audio-
visual speech recognition system.

1. INTRODUCTION

A factor which has been noted by some researchers in
the acoustic-phonetic field is the possibility of
asynchrony between the different components of the
acoustic parameterisations which are typically used for
automatic speech recognition.  This asynchrony may be
due to a number of factors, for example underlying
asynchrony between different parts of the human speech
production system, or asynchrony introduced by a
communication channel.  Conventional HMM-based
approaches to automatic speech recognition use model
states which are associated with complete synchronous
feature vectors and are therefore unable to accommodate
these effects.  One possible solution is to construct
independent sub-band HMMs, to conduct separate
classification experiments by applying these HMMs to
the appropriate sub-band representation of the speech
pattern, and to combine the separate results [1].  This
paper presents the results of an investigation into an
alternative strategy to determine the effects of
accommodating asynchrony between the upper and lower
frequency bands of the speech spectrum using integrated
models based on HMM decomposition [2].

This approach can be viewed as an elementary form of
single-signal decomposition (SSD) [3] - the
decomposition of a speech signal into parallel
asynchronous components, corresponding, for example,
to the states of the principal articulators in the vocal
tract.  Such an approach extends the conventional HMM
framework by attempting to model the underlying speech
production process, rather than simply represent detailed
surface behaviour [4].  The proposed method has the
potential to offer significant advantages for automatic
speech recognition by reducing the reliance on an
explanation of variations in speech production in terms
of random behaviour [5].

2. EXPERIMENTAL METHOD AND SPEECH
DATA

The speech data used for training and testing was
derived from an in-house speaker-dependent 500 word
ARM (Airborne Reconnaissance Mission) task [6].  This
was chosen because a corpus of  more than 15,000
results already existed with which any new results could
be compared.  Each speaker (2 male, 1 female) provided
36 ARM reports for training and 10 for testing, giving
totals of 1991 and 541 words respectively.

The speech, sampled at 20 ks/sec, was analysed using a
400 point DFT.  A Hamming window was used with a
50% overlap and the bottom 160 DFT coefficients were
selected.  This provided spectral estimates of the d.c. to 8
kHz band at a frame rate of 100 frames/second.  The
speech recognition system was based on 3-state
monophone (context-independent) HMMs, plus four
single-state, non-speech HMMs. Single component,
continuous density, Gaussian states were used and a
citation form pronunciation dictionary was employed for
training, recognition and scoring.

All data was annotated orthographically, with timing
markers provided at the boundaries of breath groups for
training data only.  The recognition system used was a
conventional one-pass Viterbi decoder with beam



pruning and partial traceback [6, 7, 8].  Neither
language model nor syntactic constraints were employed.
The resulting recognised output strings were scored
using a phone-mediated word alignment algorithm, with
all word errors being reported.

3. SUB-BAND REPRESENTATIONS FOR SPEECH
RECOGNITION

In order to investigate asynchrony between the upper and
lower frequency bands of the speech spectrum, it is
necessary to specify the frequency at which the spectrum
should be split.  Also, since the spectrum is typically
cosine transformed prior to speech recognition,  splitting
into two sub-bands allows the cosine transform to be
applied separately to each band.  The resulting feature
vector is the concatenation of the two vectors of sub-
banded cosine coefficients.  In view of the non-linear
nature of speech with respect to frequency, this in itself
may lead to performance improvements.  It has been
shown elsewhere [1] that this multi-band approach can
also provide a degree of robustness to narrow-band
interfering noise.

The composite feature vector oc
t at time t is a K

dimensional vector obtained from the cross-product of
the vector of upper-band cosine coefficients ou

t with the
vector of lower-band cosine coefficients ol

t as follows:

oc
t = ou

t ⊗  o
l
t

where the cross-product ⊗ is defined by:

oc
tk = ou

tk , k = 1, ..., U

oc
t,U+k = ol

tk , k = 1, ..., L

where U and L are the numbers of dimensions of the
upper- and lower-band data respectively.

Sets of sub-band phoneme-level HMMs were constructed
in which the underlying Markov model topology for a
particular sub-band HMM was the same as that for the
corresponding conventional HMM.  A left-to-right
topology with no state skipping was used.

4. ASYNCHRONY BETWEEN FREQUENCY
BANDS

Asynchrony between the upper and lower frequency
bands can be accommodated using either HMM
decomposition [9, 10] or parallel model combination
(PMC) [11] which is computationally more efficient.
The latter approach was used at the phoneme-level in
this study.  The principle disadvantage of PMC applied
in this way is that it only allows within-phoneme
asynchrony, since model entry and exit is synchronised

between the two streams.  Apart from this PMC and
HMM decomposition are functionally equivalent, since
the combination function is simply vector concatenation.
Previously this approach has been used successfully to
accommodate asynchrony between the two components
of an audio-visual speech recognition system [12].

Separate upper- and lower-band phoneme-level HMMs
were constructed from the corresponding components of
the synchronous sub-band HMMs.  The underlying
Markov model topologies were the same as for the
corresponding sub-band HMMs, and for each state of the
upper-band HMM, the mean vector and diagonal
(co)variance matrix were set to be equal to the upper-
band of the mean vector and covariance vector of the
corresponding synchronous sub-band HMM.  The lower-
band HMMs were constructed analogously.  The upper-
and lower-band HMMs for each phoneme were then
compiled into single PMC models [11].  More formally,
the asynchronous model mean vector µp

ir and variance
vector dp

ir and the elements apir, js of the state transition
matrix Ap were computed from the relevant components
of the synchronous model as follows:

µp
ir = µu

i ⊗ µl
r

dp
ir = du

i ⊗ dl
r

ap
ir, js = au

ij a
l
rs

where ⊗ represents the cross-product as described earlier
and state ir  corresponds to state i of the upper-band
component in the synchronous model and state r of the
lower-band component.

upper-band

lower-band

Figure 1: Asynchronous 9-state PMC model

The allowed state sequences of the asynchronous 9-state
model are shown in Figure 1, where the horizontal and
vertical time axes represents respectively transitions in
the states of the upper- and lower-bands.  Diagonal
movement indicates simultaneous transitions in the two
bands.  Figures 2 and 3 illustrate the relaxation obtained



when an asynchronous HMM topology is employed to
model a single phone.
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Figure 2: Conventional modelling using synchronous
sub-band structure
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Figure 3: Decomposition using asynchronous PMC
model

5. EXPERIMENTS AND RESULTS

A large set of experiments was conducted to investigate
the effects of the choice of splitting frequency and the
numbers of cosine coefficients used to represent the
upper- and lower-frequency bands for synchronous sub-
band HMMs.  Reference results are provided for the
single 8 kHz band and a feature vector of 30 cosine
coefficients plus one energy term.  Not surprisingly, the
optimal frequency which separates the upper- and lower-
bands varies between speakers.  Experimental results,
shown in Table 1, indicate an improvement in
recognition accuracy for the two male speakers when the
spectrum is split into two bands at 4 kHz.  The system
used 25 and 4 cosine coefficients plus two energy terms
to describe the lower and upper bands respectively.

Increasing the split frequency improved the performance
of the female speaker at the expense of the two males,
however all sub-band results shown here are for a 4 kHz
split.  Experiments have also been conducted in which
the frequency axis is partitioned into three bands, but as

yet performance for clean speech is no better than that
achieved with two bands.

The investigation of the asynchronous models was made
more complex by the interaction of the PMC process
with HMM parameter training, since it can be applied to
the initial HMMs before sub-banding, the sub-band
HMMs, the individual upper- and lower-band HMMs or
to the combined PMC HMMs.  In terms of synchrony,
these correspond, respectively, to (i) synchronous
training of the upper- and lower-band HMMs, (ii)
asynchronous training of these models and (iii) a
compromise between these two extremes.

All of these factors have been investigated through an
extensive programme of experiments using a range of
two-band representations and 9-state monophone
HMMs.  The best results from these experiments are
between 2% and 4% better than the corresponding
synchronous results in absolute terms.  Again there was
variation between speakers - due in part to the numbers
of cosine coefficients representing each band and also
due to the different training schemes employed.  It was
found to be detrimental to re-estimate the parameters of
the upper- and, to a lesser extent, lower-band HMMs
separately.  This is because the upper-band HMMs do
not contain sufficient information in themselves to
guarantee a meaningful alignment of the HMMs and
speech data during training.  By contrast it was found to
be beneficial to train the PMC HMMs, indicating that
while the PMC HMMs allow some asynchrony, they still
enforce sufficient synchrony to ensure a good alignment
between the HMMs and training data during parameter
re-estimation.  The results in Table 1 indicate word error
rate reductions for asynchronous models of 29% and
22% for the male speakers and 19% for the female, in
relative terms, when compared to the results for the
corresponding synchronous models.  These improved
results are for a 31 dimensional representation and
models trained for 10 iterations from initial PMC
creation.

Three band asynchronous PMC models have also been
investigated, but again they have not performed as well
as the two band PMC models to-date.  It has already
been noted that the asynchronous behaviour in the PMC
approach is constrained by the requirement that the
component streams are synchronised on model entry and
exit (i.e. at phone boundaries).  This can be overcome by
extending the HMM topology to allow more model entry
and exit states.  However, benefits in terms of
recognition performance have been small.

upper

lower

upper

lower



Data representation Model configuration Training Word error rate, %

Male-M Male-R Female-S

Single band, 30 CC + 1 E 3-state 30 iterations from initialisation 11.1 16.3 12.8

Two band, 25+4 CC + 2 E 3-state synchronous 30 iterations from initialisation 8.3 15.3 13.5

Two band, 25+4 CC + 2 E 9-state asynchronous 10 iterations after PMC creation5.9 12.0 10.9

Table 1: Speaker-dependent recognition results for a 500-word continuous-speech task

6. CONCLUSION

The use of two-band analysis of speech can provide an
improvement in recognition performance.  Further
improvement are obtained by accommodating
asynchronous behaviour in the speech signal using a
technique which decomposes the speech into separate
components.  This single-signal decomposition approach
provides a method which better models the underlying
speech production process.  More work is required to
model the asynchrony across phoneme and word
boundaries.  In addition, a more principled strategy is
required for providing optimal frequency-band
partitioning for each speaker or set of speakers.

7. REFERENCES

[1] H Bourlard and S Dupont, “A new ASR approach
based on independent processing and
recombination of partial frequency bands”,
Proceedings of ICSLP, Philadelphia, October 1996.

[2] R K Moore, “Signal decomposition using Markov
modelling techniques”, RSRE Memorandum 3931,
1986.

[3] R K Moore, “Critique: The potential role of speech
production models in automatic speech
recognition”, JASA vol. 99, March 1996.

[4] M J Russell, “Advances in speech recognition”,
Proceedings of IoA Conf. on Speech and Hearing,
Windermere, November 1996.

[5] R K Moore, “Twenty things we still don’t know
about speech”, Proceedings of CRIM/FORWISS
Workshop on ‘Progress and Prospects of Speech
Research Technology’, Munich, September 1994.

[6] M J Russell, K M Ponting, S M Peeling, S R
Browning, J S Bridle and R K Moore.  “The ARM
continuous speech recognition system”,
Proceedings of IEEE ICASSP, Albuquerque, April
1990.

[7] J S Bridle, M D Brown and R M Chamberlain, “A
One-Pass Algorithm for Connected Word
Recognition”, Proceedings of IEEE ICASSP, Paris,
1982.

[8] K-F Lee, “Large Vocabulary Speaker Independent
Continuous Speech Recognition: the SPHINX
System”, PhD thesis, Carnegie Mellon University,
1988.

[9] A P Varga and R K Moore, “Hidden Markov model
decomposition of Speech and Noise”, Proceedings
of IEEE ICASSP, Albuquerque, April 1990.

[10] M Kadirkamanathan, “Hidden Markov Model
Decomposition Recognition of Speech in Noise: A
comprehensive experimental study”, Proceedings
of ESCA Workshop on Speech Processing in
Adverse Conditions, Nice, November 1992.

[11] M J F Gales and S J Young, “HMM recognition in
noise using Parallel Model Combination”,
Proceedings of EUROSPEECH, Berlin, September
1993.

[12] M J Tomlinson, M J Russell and N M Brooke,
“Integrating audio and visual information to
provide highly robust speech recognition”,
Proceedings IEEE ICASSP, Atlanta, May 1996.

 British Crown Copyright 1996/DERA

Published with the permission of the controller of
Her Britannic Majesty’s Stationary Office


