
RECOGNIZING REVERBERANT SPEECH WITH RASTA-PLP

Brian E. D. Kingsbury and Nelson Morgan

International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, CA 94704, USA
Dept. of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94704, USA

fbedk,morgang@icsi.berkeley.edu

ABSTRACT

The performance of the PLP, log-RASTA-PLP, and
J-RASTA-PLP front ends for recognition of highly rever-
berant speech is measured and compared with the perfor-
mance of humans and the performance of an experimental
RASTA-like front end on reverberant speech, and with the
performance of a PLP-based recognizer trained on reverber-
ant speech. While humans are able to reliably recognize the
reverberant test set, achieving a 6.1% word error rate, the
best RASTA-PLP-based recognizer has a word error rate of
68.7% on the same test set, and the PLP-based recognizer
trained on reverberant speech has a 50.3% word error rate.
Our experimental variant on RASTA processing provides a
statistically signi�cant improvement in performance on the
reverberant speech, with a best word error rate of 64.1%.

1. INTRODUCTION

Robustness to reverberation in automatic speech recogni-
tion (ASR) systems is a problem of both practical and the-
oretical interest. One of the most promising aspects of ASR
technology is the potential for hands-free interaction with
machines. If this potential is to be ful�lled, however, the
problem of reliably recognizing reverberant speech must be
solved. Users will, quite reasonably, expect their systems to
work equally well whether they are spoken to from across
the room or from nearby. Reverberation is also interesting
because it is a form of distortion quite distinct from both
additive noise and spectral shaping. Unlike additive noise,
reverberation creates interference that is correlated with
the speech signal, and although reverberation and spectral
shaping are both forms of linear convolutional distortion,
spectral shaping is multiplicative in the short-time Fourier
transform domain when a typical-length analysis window of
around 10 ms is used, while reverberation is not. In a spec-
trographic display such as Figure 1, reverberation appears
as a form of temporal smearing.

While humans are relatively tolerant of reverberation in
speech, it appears that ASR systems are not. In [1], Sandhu
and Ghitza reported that the phone error rate on TIMIT
sentences increased from 27.1% on a clean test set to 81.3%
on a reverberant test set for a recognizer that used a mel-
cepstral front end. Using an auditory-based front end, the
ensemble interval histogram (EIH), they found that the
phone error rate increased from 36% on a clean test set
to 82.7% on a reverberant test set. In that study, the rever-
berant test set was produced by processing the clean test
set through a room reverberation simulator with a reverber-
ation time of roughly 250{300 ms. In contrast, for humans
listening to monaural presentations of Modi�ed Rhyme Test

(MRT) words in a carrier phrase, the error rate increased
from 1.2% on a clean test set to 6.6% on a reverberant test
set for word-initial consonants, and from 5.6% on a clean
test set to 15.5% on a reverberant test set for word-�nal
consonants [2]. In that study, the reverberant test set was
produced by playing the clean test set in a room with an
average reverberation time of 800 ms.
A RASTA-like algorithm for the dereverberation of

speech was previously used to improve the performance
of a speaker-dependent, isolated-word dynamic-time-warp
recognizer on reverberant speech [3]. Our goal is not to
enhance speech, but rather to extract reverberation-robust
features for use in speaker-independent, continuous speech
recognition systems. We are speci�cally interested in a class
of generalized RASTA algorithms that use more moderate
forms of automatic gain control than the current algorithms,
that use methods other than autoregressive modeling for
spectral smoothing and enhancement of spectral peaks, and
that perform an analysis of temporal modulations in multi-
ple modulation frequency bands. To provide a baseline ref-
erence for a study of these algorithms, we have tested PLP
[4], log-RASTA-PLP, and J-RASTA-PLP [5] front ends,
both singly and in combination, on a highly reverberant
test set. We have included a simple example of the class
of algorithms we are now studying in these tests, and the
initial results are promising. We have also performed a sim-
ple human listening experiment on the same test set, under
conditions that are closely matched to the machine recogni-
tion tests, to obtain an upper bound for performance. The
following sections describe the human and machine recogni-
tion experiments, present the results of those experiments,
and discuss their implications for performing robust ASR
in reverberant environments.

2. EXPERIMENTAL CONDITIONS

2.1. Speech Material

Both the machine recognition and human recognition tests
were performed using material from the Numbers93 corpus,
a subset of the Numbers corpus [6] collected by the Cen-
ter for Speech and Language Understanding at the Oregon
Graduate Institute. The Numbers93 corpus is a collection of
spontaneous utterances from many speakers, collected over
the telephone and sampled at 8 kHz with a 16-bit A/D con-
verter. The vocabulary is restricted to numbers and a few
other words; a sample utterance from the corpus is \nine
double oh one eight."

2.2. Generating Reverberant Speech

Reverberant speech for the experiments was generated by
digitally convolving clean speech from Numbers93 with a
hand-designed impulse response. The impulse response was
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Figure 1. Spectrograms for clean and reverber-
ant versions of the telephone-bandwidth utterance
\ten."

designed to match the gross characteristics of a hallway
about 6.1 m long, 2.4 m high, and 1.7 m wide, with concrete
walls, oor, and ceiling. From a recording of speech col-
lected in this hallway, reverberation times in di�erent sub-
bands were estimated. These estimates are summarized in
Table 1. Next, Gaussian white noise was processed through
an FIR �lter bank to split it into subbands identical to
those in which the reverberation times were measured, and
each noise band was modulated with an exponential that
matched the reverberation time estimated for that subband.
The modulated noise bands were then added together to
produce the reverberant tail of the impulse response. The
sparse, early reections were estimated using a simple time-
domain point image expansion simulation [7]. The ratio of
direct to reverberant sound was adjusted by ear to match
the original recording conditions, in which the microphone
was located approximately 2.5 m from the speaker. The
ratio of direct to reverberant sound energy is -16 dB.

2.3. Machine Recognition Experiments

Machine recognition tests were run using a hybrid hidden
Markov model/multilayer perceptron (HMM/MLP) recog-
nizer [8] in which phone probabilities are estimated using
an MLP and speech decoding is done with a Viterbi search.
Four front ends were tested: PLP, log-RASTA-PLP, J-
RASTA-PLP, and an experimental RASTA-like front end
we call the modulation spectrogram. The modulation spec-
trogram is distinguished from other RASTA-PLP algo-
rithms in a number of ways: the modulation spectrogram
is computed using a �lterbank for spectral analysis instead
of a short-time Fourier transform, it uses o�-line spectral
normalization over an entire utterance instead of on-line
adaptation, it performs an analysis of slow modulations in
speech in the linear domain instead of the log or lin-log do-
main, and it uses global thresholding for enhancement of
spectral peaks instead of autoregressive modeling. Further
details on the modulation spectrogram are provided in [9].
The PLP, log-RASTA-PLP, and J-RASTA-PLP front

ends used a 25 ms analysis window, an 80 Hz frame rate,
and produced nine cepstral coe�cients (including the en-
ergy term) per frame. The MLP phonetic probability es-
timators used with these front ends had 120 inputs (the

Freq. Band Reverb. Time

0{250 Hz 3.1 s

250{500 Hz 2.6 s

500{1000 Hz 2.2 s

1000{2000 Hz 1.6 s

2000{4000 Hz 1.4 s

Table 1. Estimated reverberation times in di�erent
frequency bands for hallway.

cepstral coe�cients, excluding the energy term, for the cur-
rent frame, the previous seven frames, and the next seven
frames), 512 hidden units, and 56 output units, for a to-
tal of 90,112 weights. The modulation spectrogram pro-
duced �fteen spectral coe�cients per frame at an 80 Hz
frame rate. The MLP phonetic probability estimator used
with the modulation spectrogram features had 225 inputs
(the spectral coe�cients for the current frame, the previous
seven frames, and the next seven frames), 320 hidden units,
and 56 output units, for a total of 89,920 weights. A class
bigram grammar language model was used during speech
decoding. Each recognizer was trained on a set of 875 ut-
terances. An iterative procedure, in which the speech was
relabeled via forced alignment and a recognizer was trained
using the new labels, was employed to ensure a good match
between the features and word models used in recognition.
Testing of the recognizers was carried out on clean and re-
verberant versions of a 657-utterance test set.
Three di�erent machine recognition experiments were

run. First, to establish baseline results, recognizers using
each of the four front ends were trained on a clean version of
the training set, then tested on the clean and reverberant
test sets. Second, recognizers using the PLP and modu-
lation spectrogram features were trained on a reverberant
version of the training set, then tested on the clean and
reverberant test sets. Finally, recognition tests were run
using frame-level phonetic probability estimates that were
obtained by combining the estimates from MLPs trained on
two di�erent feature sets. The probability combination was
accomplished by multiplying together the probability esti-
mates from each MLP and normalizing by the prior proba-
bilities. This technique is a version of a \mixture of experts"
system, and works best when the MLPs used make indepen-
dent errors. We hypothesize that when an MLP is unable
to classify a given frame correctly, it may produce a rela-
tively at distribution of phone probabilities at its output.
In this case, if the other MLP is able to correctly classify the
frame, then the multiplication of its peaked output distri-
bution by the other network's at output distribution will
not signi�cantly change the probability estimates.

2.4. Human Recognition Experiments

For the human recognition tests, three subjects were asked
to word-transcribe the same 657 reverberant utterances
upon which the automatic recognition systems were tested.
The subjects were provided with a list of the words present
in Numbers93 because the automatic recognizers were pro-
vided with the same information. The order of the sentences
was randomized to prevent any learning of speaker charac-
teristics, and the subjects were allowed to listen to each
utterance as many times as they wanted to minimize short-
term memory e�ects. During the testing, the subjects were
not given any feedback on their transcription accuracy. The
utterances were produced by the 16-bit D/A converter in



experiment feature set condition substitutions deletions insertions error

PLP clean 11.1% 3.2% 3.5% 17.8%

reverb 35.0% 33.8% 2.7% 71.5%

log-RASTA clean 10.9% 3.0% 2.5% 16.4%

baseline reverb 41.0% 31.4% 2.0% 74.4%

J-RASTA clean 12.0% 3.2% 1.8% 16.9%

reverb 46.0% 30.0% 2.9% 78.9%

mod. spec. clean 22.6% 6.6% 2.5% 31.7%

reverb 42.2% 20.5% 3.4% 66.0%

PLP clean 35.3% 4.2% 34.2% 73.3%

train on reverb 29.2% 13.4% 7.6% 50.3%

reverb mod. spec. clean 34.8% 6.8% 4.8% 46.4%

reverb 30.9% 10.4% 3.2% 44.4%

PLP & log-RASTA clean 7.0% 2.6% 2.2% 11.9%

combined reverb 36.4% 29.7% 2.6% 68.7%

probabilities PLP & mod. spec. clean 8.4% 2.2% 3.1% 13.6%

reverb 39.0% 19.6% 5.5% 64.1%

humans reverb 4.1% 1.4% 0.6% 6.1%

Table 2. Machine and human recognition results. All percentages are word error rates.

a SPARC-5 workstation at a sampling rate of 8 kHz, and
were presented over headphones at a comfortable level in
a quiet o�ce. All subjects were native speakers of Ameri-
can English, had no known hearing impairments, and had
considerable experience performing phonetic transcription
of speech. Prior to the recognition testing, each subject
was trained on ten other reverberant utterances from Num-
bers93 to familiarize them with the task. During training
the subjects were given feedback on their transcription ac-
curacy.

3. RESULTS

The results of the machine and human recognition tests are
summarized in Table 2.
Among the baseline clean test results, the di�erences be-

tween the PLP, log-RASTA, and J-RASTA scores are not
statistically signi�cant. The score for the modulation spec-
trogram features is signi�cantly worse. The di�erences be-
tween the scores on the baseline reverberant test are all
statistically signi�cant, with the modulation spectrogram
features giving the best performance, followed by the PLP
features.
The experiments in which the recognizer was trained on

reverberant speech, then tested on clean and reverberant
speech, illustrate the di�culty of the reverberant test set:
even when the training and test conditions are matched, the
recognizer word error rate is in the 44{50% range.
Combining phone probability estimates from the MLPs

trained on the PLP and log-RASTA features, which is in
some ways analogous to supplementing the PLP features
with delta features, gives the best performance of any rec-
ognizer on the clean test, and also gives a statistically signif-
icant improvement in performance on the reverberant test.
Combining phone probabilities from the MLPs trained on
the PLP and modulation spectrogram features gives bet-
ter performance on the clean test than any other recognizer
except the combined PLP and log-RASTA recognizer, and
gives the best performance on the reverberant test. The
combined recognizers have twice as many parameters as the

baseline recognizers, but their improved performance is not
due to the larger number of weights: doubling the num-
ber of weights in the baseline recognizers does not yield a
signi�cant improvement in performance.
The human listeners had much less di�culty on this task

than the automatic recognizers.1 The human error rates are
high for a word recognition task with a known vocabulary.
Although we do not have measurements for human subjects
listening to the clean test set, we note that the word error
rate for humans listening to connected digit strings from
the TI DIGITS corpus was 0.105% [10]. The error rate for
humans on the reverberant test set is still lower than the
best recognizer's error rate on the clean test set.

4. CONCLUSIONS

Recognition of highly reverberant speech is a di�cult task.
The best ASR system's score on the reverberant test set,
with training on the clean test set, is an order of magnitude
higher than the scores of human listeners. Furthermore, the
score for the PLP-based recognizer that was trained then
tested on reverberant speech is extremely high: 50%. This
matched reverberant training and test result may be re-
garded as a lower bound on the performance of a PLP-based
recognizer that uses a frame-oriented hybrid HMM/MLP
architecture. Neither the log-RASTA nor the J-RASTA
front end provide any improvement on their own on this
reverberant test set, and while a combined PLP and log-
RASTA recognizer does provide a signi�cant improvement

1The human listeners' error rates were extremely consistent,

as well as extremely low compared to the automatic recognizers.

The word error rates on the listening test for each subject were
as follows:

substitutions 108 103 91

deletions 25 35 40
insertions 13 15 14

total error 146 153 145

There were a total of 2426 words in the test.



in performance on the reverberant test set, it does not ap-
proach this lower bound.
The modulation spectrographic features, which are an

experimental variant on RASTA, provide improved perfor-
mance on the reverberant test set over the other front ends,
and when the modulation spectrographic features are com-
bined with PLP features, it is also possible to get good
performance on the clean test set. We believe that the per-
formance improvement in reverberation that is provided by
the modulation spectrographic features arises from their ro-
bust representation of syllabic segments in the speech sig-
nal. This hypothesis is supported by the fact that most
of the improvement in reverberation with the modulation
spectrographic features comes from a reduction in the dele-
tion rate. Also, we have observed that the modulation spec-
trographic features tend to highlight the high-energy por-
tions of the speech signal associated with syllabic nuclei.
A variant on the modulation spectrographic features that

does not perform any global thresholding [9] gives nearly
the same performance on the clean speech as PLP, without
any probability combination, and performance on the rever-
berant speech that is essentially the same as that provided
by the modulation spectrographic features reported in this
paper. A recognizer that uses these variant features, but
is otherwise identical to the baseline modulation spectro-
graphic recognizer described here has a word error rate of
19.2% on the clean test set and a word error rate of 66.9%
on the reverberant test set. However, when this variant is
combined with PLP, we do not observe the same perfor-
mance improvement on clean and reverberant speech that
we obtained here through combining.
It is possible that improvements in the front end may not,

on their own, be su�cient to achieve reliable recognition
of reverberant speech: in the matched reverberant train-
ing and test experiment with modulation spectrographic
features, the word error rate is still 44%. Changes in the
recognizer architecture, for example recognition based on
syllables instead of phones, may be needed to cope with the
long-time e�ects of room reverberation.
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