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ABSTRACT

This paper presents an in-depth study of nonlinear
long-term prediction of speech signals. While previous stud-
ies of nonlinear prediction focused on short-term prediction
(with only moderate performance advantage over adaptive
linear prediction in most cases), successful long-term predic-
tion strongly depends on the nonlinear oscillator framework
for speech modeling. This hypothesis has been con�rmed
in a series of experiments run on a voiced speech database.
We provide results for the prediction gain as a function of
the prediction delay using two methods. One is based on
an extended form of radial basis function networks and is
intended to show what performance can be reached using
a nonlinear predictor. The other relies on calculating the
mutual information between multiple signal samples. We
explain the role of this mutual information function as the
upper bound on the achievable prediction gain. We show
that with matching memory and dimension, the two meth-
ods yield nearly the same value for the achievable predic-
tion gain. We try to make a fair comparison of these values
against those obtained using optimized linear predictors of
various orders. It turns out that the nonlinear predictor's
gain is signi�cantly higher than that for a linear predictor
using the same parameters.

1. INTRODUCTION

Nonlinear prediction of speech signals has been subject to
several studies over the past �ve years with highly varying
outcomes, for an extended list of references see [6, section
2.2]. Still, an upsurge in the practical use of nonlinear pre-
diction has not yet arrived; for a notable exception, see [7].
This contribution attempts to clarify what nonlinear pre-
diction can do for speech processing. To this end, we �rst
introduce a systematic description of predictor characteris-
tics.
Linear predictors are usually speci�ed by their order and

their prediction delay L which is either one sampling inter-
val (short-term prediction) or one pitch period (long-term
prediction).
Nonlinear predictors require to break up the simple order

concept into three di�erent features: The memory span M
denotes the duration (in physical time units) of the speech
signal history stored in the predictor state memory. The
dimension D denotes the number of predictor state vector
components used as the input to the nonlinear map which
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computes the predicted signal value. Due to results from
nonlinear dynamical systems theory, the dimension can of-
ten be much lower than the memory span divided by the
sampling interval, i.e., a subsampled version of the predic-
tor memory serves as the input to the nonlinear map imple-
mented by the predictor. The complexity C of the predic-
tor structure is not de�ned by its dimension alone, but one
needs to take the degree of the nonlinearity into account
(e.g., polynomial degree, number of hidden nodes in neural
networks, etc.).
We have selected nonlinear long-term prediction of sus-

tained voiced speech sounds as the experimental paradigm.
This choice is motivated from the following:

� We have shown previously that linear autoregressive
models are fully adequate for unvoiced speech [6, sec-
tion 2.1].

� Many studies including our own [5, 4] have shown that
it is di�cult to design nonlinear short-term predictors
for voiced speech which would substantially outperform
linear predictors. This result remains unchanged even
when the nonlinear predictor operates on the linear
prediction residual.

� Continuous speech is characterized by frequent bifur-
cation-type transitions such as voiced/unvoiced tran-
sitions etc. No predictor can be expected to operate
across such boundaries without performance degrada-
tion. As our focus is on the exploration of the margins
of predictability to be gained by nonlinear methods, we
want to exclude the in
uence of nonstationarity explic-
itly. Working with sustained speech sounds allows us
to establish upper bounds on the prediction gain that
will carry over to continuous speech.

In the following, we present two strategies to establish
such upper bounds. Section 2 discusses the design and
training of radial basis function network based autoregres-
sive models (RBF-AR) as a constructive vehicle to approach
the upper bounds of predictability. Section 3 presents a
model-free, nonparametric algorithm which estimates the
mutual information function of the speech signal and which
directly relates to the maximum achievable prediction gain.
Results for both strategies are summarized in section 4
where long-term prediction over a whole range of predic-
tion delays (from zero to several pitch periods) is studied.
Section 5 presents our conclusions.

2. NONLINEAR PREDICTION BY RBF-AR
NETWORKS

We use RBF-AR networks [8] as nonlinear predictors since
they have proved to provide very good nonlinear approxima-



tion capabilities, and e�cient training algorithms do exist
[4].
The RBF-AR network can be described as a general map-

ping structure which computes a locally linear map from the
vector1 of inputs i = [i1 : : : iD]

T to the scalar output o:

o =
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Here we have de�ned

i0 � 1 and '0 � 1: (2)

In addition, 'k(i) is the activation of hidden node k, which
is taken to be a multidimensional Gaussian with center vec-
tor tk and scalar covariance �k,

'k(i) = exp
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If we use a vector of lagged speech signal samples y(t) =

[y(t); y(t��1); : : : ; y(t��D�1)]
T for the input vector i, we see

from eq. (1) that the RBF-AR network computes a weighted
sum of FIR-�ltered versions of the input signal.
Training of the RBF-AR network is accomplished in the

usual mixed unsupervised/supervised fashion using a set of
input and target values, i(t) and d(t). t numbers the set
of training examples, which in our case are taken from a
certain part of some test speech signal. First, a clustering
procedure is used to determine the hidden nodes' centers tk
such that they represent the training vectors i(t) with min-
imum (quadratic) distortion. Each Gaussian's covariance
�2k is chosen proportionally to the mean square distortion
of the training vectors closest to center k. In the second
step, the output weights wl;k are computed to minimize the
energy of the residual,

E =
X
t

jjd(t)� o(t)jj2: (4)

The target value d(t) is given by the signal sample to be
predicted, y(t + L), and the output o accordingly is the
prediction ŷ(t + L) itself. The quotient of the target en-
ergy

P
t
jjd(t)jj2 and the cost function is the prediction gain

(cf. below). However, in order to verify the generalization
ability of the predictor, we may alternatively use a sepa-
rate set of test vectors; then the parameters of the network
are calculated as just described, but the prediction gain is
rede�ned by re-calculating both the cost function and the
target energy using the test instead of the training set.
Varying the prediction delay from zero to some maximum

value results in a characteristic variation of the prediction
gain. In sec. 4, we shall show that it nearly reaches the
upper bound on prediction gain estimated through calcu-
lation of the mutual information between the input vector
y(t) and the target value y(t+ L).

3. MUTUAL INFORMATION AND
PREDICTION GAIN

For a given stochastic process, we may ask what the maxi-
mum achievable prediction gain is. In prediction, we make
use of the information contained in past samples to com-
pute an estimate for a future sample. Again, we denote the

1Vector quantities are denoted by boldface type.

sample to be predicted by y(t+L), and the memory of past
samples by the vector y(t), as in the nonlinear predictor
above. For an additive model, the error between actual and
estimated value is de�ned by

e(t+ L) = y(t+ L)� ŷ(t+ L) = y(t+ L)� f(y(t)): (5)

The performance measure is de�ned to be the prediction
gain. Under the assumption of stationarity, we get for the
prediction gain G as a function of the prediction delay L

G(L) = 10 log
10

�2y

�2e(L)
[dB] (6)

where �2y denotes the process power, and the error power �
2

e

depends on the prediction delay L. In [1], we have shown
that an upper bound on the prediction gain G(L) can be
found using information theoretic considerations. This up-
per bound is independent of the functional form of the pre-
dictor f . It is given by the mutual information between
y(t + L) and y(t), i.e., I(y(t + L);y(t)), corrected by the
entropy di�erence � between y(t+L) and a Gaussian ran-
dom variable with the same variance �2y:

G(L) � 20 log
10
(2) �

�
I(y(t+ L);y(t)) + �

�
[dB] (7)

Here, the mutual information I(y(t+L);y(t)) quanti�es the
information shared between two random variables y(t+ L)
and y(t). It expresses how much we know about the pre-
dicted sample y(t + L), if we consider the essential past
contained in y(t). The additional term � describes the dis-
tance of the amplitude distribution of y(t) from a Gaussian,
which has the minimum variance for a given entropy h(y).
We have

� =
1

2
log

2
(2�e�2y)� h(y): (8)

To estimate both the mutual information and the entropy
di�erence, we have developed a fast algorithm [2] whose
computational complexity increases only linearly with the
input vector dimension D.
Again, the upper bound on prediction gain G depends on

the prediction delay L.

4. RESULTS

In the following, we discuss one speci�c example from our
database of sustained voiced speech sounds in detail. It has
been produced by a male speaker and sampled at 48 kHz to
achieve the high temporal resolution which optimizes long-
term prediction performance. We use a linear predictor of
order 144 as our baseline reference. This predictor has the
same memory (M = 3 ms) as an order 24 predictor at a
sampling frequency of 8 kHz. We call this a short-memory
linear predictor as the memory spans still signi�cantly less
than the pitch period of the speaker. We also show results
for linear predictors of orders 33 and 1 (the latter corre-
sponds to the usual setting for oversampled pitch predic-
tors), to provide some further reference points. The linear
predictors are optimized according to the same least squares
criterion as in eq. (4).
We estimate the upper bound on the prediction gain using

the mutual information algorithm with a dimension D = 3
and lags �k = f16; 32g. These values result from an op-
timum state-space reconstruction procedure based on the
mutual information algorithm [2].
For the RBF-AR nonlinear predictor, we use the same di-

mension (D = 3) and lags, such that we can easily compare
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Figure 1. Linear prediction gain vs. prediction delay: Long-
memory linear predictor (oscillating behavior); short-memory
linear predictors, D = 1=33=144 (smooth curves with peaks
at multiples of the pitch period).

the results to those obtained using the previous method.
The network comprises K = 40 centers.
Finally, we also evaluate the performance of a long-

memory linear predictor whose memory covers a full pitch
period. For the fundamental frequency of 120 Hz, this re-
quires to use a memory spanning at least 8:3 ms. To keep
the solution for the predictor coe�cients computationally
tractable, we use lags �k = 16k; 1 � k � D� 1, and set the
predictor dimension to D = 32, corresponding to a memory
of around 10 ms. This choice of lags matches those of the
mutual information and RBF-AR algorithms.
Figs. 1 and 2 show a comparison of the prediction gain

vs. prediction delay calculated using these methods. Here,
we calculate the prediction gain for the training sequence it-
self, which consists of samples 42001 : : : 52000 of the speech
signal. We note the following results:

� The short-memory linear predictor shows a character-
istic periodicity in prediction gain vs. prediction delay.
This period corresponds to the fundamental frequency.
Except for prediction delays which are multiples of the
pitch period, the prediction gain is practically zero.

� As the signal is almost periodic, a straightforward lin-
ear predictor can be built by simply copying samples
from the previous period. This requires the use of a
long memory if arbitrary prediction delays are to be
handled. The gain of this linear predictor is approxi-
mately constant over the whole pitch period. Due to
the lags being multiples of 16, we have oscillations with
a period of 16. We can easily explain this e�ect by not-
ing that the long-memory predictor achieves most of
its prediction gain by copying samples from the previ-
ous pitch period. But the predictor input vector only
includes every 16th sample, which results in the ob-
served oscillating prediction gain. (Note that there are
no such oscillations for the short-memory linear pre-
dictors which do not use subsampling.) However, it
should be clear that even using all samples, only the
oscillations would vanish, with no additional prediction
gain over the maxima of the oscillations.
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Figure 2. Nonlinear prediction gain vs. prediction delay: Upper
bound obtained from the mutual information estimate (top);
short-memory RBF-AR predictor, D = 3 (bottom).

� The prediction gain of the long-memory linear predic-
tor falls in steps with each period, approximately paral-
leling the falling upper bound estimated by the mutual
information algorithm. Within a source{�lter model
for speech, this stair-case behavior can be explained
by locating the major nonlinearity of speech generation
with the excitation pulse generator driving the �lter.

� The RBF-AR predictor achieves at least the same pre-
diction gain as the linear predictors despite being fed
only three past samples from a memory of only 0:67 ms.
It is mostly una�ected by the larger lags used for the
construction of the state memory: Whereas the (long
memory) linear predictor exhibits oscillations with a
period corresponding to the lags (i.e., 16), this is much
less the case for the nonlinear predictor. Furthermore,
the decay of the nonlinear prediction gain follows the
upper bound on the prediction gain without the step
changes seen in the long-memory linear predictor.

Using a di�erent test sequence (consisting of samples
53001 : : : 63000 of the same signal) even more supports the
nonlinear prediction approach: There, all types of linear
predictors incur a larger decrease in prediction gain (com-
pared to the case where test and training sequences are the
same) than the nonlinear predictor (cf. �g. 3). The RBF-
AR predictor surpasses the prediction gain of the long-term
linear predictor by up to 5 dB (e.g., for a prediction delay
L = 500). Our interpretation is that the nonlinear predictor
is both less susceptible to noise as well as to temporal vari-
ations in the signal, and better captures the nonlinearities
present in the speech generation mechanism.

5. CONCLUSIONS

The most attractive result here certainly is the strong cor-
respondence between the prediction gain values obtained
using two very di�erent nonlinear methods, namely the
calculation of the mutual information function of signals,
and prediction via an RBF-AR network. The values match
rather well over a range of prediction delays. Hence, these
methods can be seen as complementary to each other, and
results obtained using one can be expected to be similar for
the other.



0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

prediction delay (samples)

pr
ed

ic
tio

n 
ga

in
 (

dB
)

Figure 3. Prediction gains for a di�erent test sequence: Shown
are two short-memory linear predictors (peaking only at multi-
ples of the pitch period), a long-memory linear predictor (os-
cillating behavior), the RBF-AR predictor with largest gain
especially outside the pitch intervals, and the upper bound
estimated by the mutual information algorithm (which is un-
changed from �g. 2).

Another interesting feature of nonlinear long-term pre-
diction is its slow and almost monotonic performance de-
cay with increasing prediction delay. This performance is
achieved even with short memory and low dimension, both
for the maximum achievable gain and with the constructive
RBF-AR method.
A point for critique might be the apparent di�erence in

complexity between the linear and nonlinear predictors. In
fact, the RBF-AR predictor in the con�guration used in
this paper comprises a total of 324 trained parameters, 160
in the hidden layer, plus 164 in the (linear) output layer.
Conversely, the linear predictors shown here have a com-
plexity (equal to the number of tap weights) of between 1
and 144. There are, however, still several points in favor of
the nonlinear approach:

� Building a linear predictor with full performance over
a range of delays requires di�erent taps for each value
of the delay, which is in contrast to the nonlinear pre-
dictor which operates on the same taps for all delays.
Alternatively, we may use a dense set of taps over a
full pitch period, which however would increase the lin-
ear predictor's complexity beyond that of the nonlinear
one.

� It is possible to use a �xed hidden layer of Gaussian
nodes, with only a minor decrease in performance. This
reduces the complexity of the RBF-AR predictor to
164.

� For the case of equal training and test sets, the long-
term linear predictor's performance matches that of the
nonlinear nearly everywhere (cf. �gs. 1 and 2). How-
ever, this is due to overtraining, as can nicely be seen
in the last �gure. Clearly, the RBF-AR predictor much
better captures the underlying nonlinearities inherent
in the speech generation mechanism. This is impor-
tant in situations where the predictor operates on pre-
viously unseen data, which is the case in most practical
applications.

� Finally, the map produced by a nonlinear (usually one-
step) predictor may be iterated2 [3]. The resulting time
series resembles the training signal for at least several
periods, and does not decay to zero as would be the case
for a standard (stable) AR model without an excitation
signal.

The last point suggests that nonlinear methods would al-
low to extrapolate voiced speech signals over relatively long
intervals which could be exploited in the design of vector
predictive coders or for the restoration of lost speech frames
in mobile radio or packet-switched transmission systems.
Let us �nally note that this study, too, arrives at the well-

known result that a linear predictor already provides a very
good approximation to the speech waveform. Any addi-
tional performance improvements are either rather moder-
ate or can be gained only using complex structures. This ad-
ditional complexity can, however, be tolerated if the speech
modeling approach shifts from prediction to synthesis. The
results reported here provide further support for the non-
linear oscillator model of speech [6].
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