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ABSTRACT

The objective of this work is a computationally e�cient
method for inferring vocal tract shape trajectories from
acoustic speech signals. We use an MLP to model the vo-
cal tract shape-to-acoustics mapping, then in an analysis-
by-synthesis approach, optimise an objective function that
includes both the accuracy of the spectrum approximation
and the credibility of the vocal tract dynamics.

This optimisation carries out gradient descent using back-
propagation of derivatives through the MLP. Employing a
series of MLPs of increasing order avoids getting trapped in
local optima caused by the many-to-one mapping between
vocal tract shapes and acoustics. We obtain two orders
of magnitude speed increase compared with our previous
methods using codebooks and direct optimisation of a syn-
thesiser.

1. INTRODUCTION

Articulatory representations o�er potential bene�ts over
usual spectral representations. The physical limitations of
the dynamics of the articulators in the vocal tract imply
slowly changing parameters. A closer relationship with the
phonetic domain suggests that such representations might
be more suitable for recognition, and, as it is believed that
coarticulation and transitional e�ects take place at this
level, o�er hope in modelling these phenomena.

We focus here on physical representations in the form of
area functions rather than the relative positions of the lips,
tongue, jaw, etc. Our motive is to achieve a representa-
tion exhibiting the above desirable qualities, rather than
estimate the precise geometry of the vocal tract.

The problem of estimating vocal tract shapes from the
speech signal, often termed the inversion task, is di�cult
because this mapping is both non-linear and one-to-many.
As the mapping is non-linear previous approaches have used
techniques such as articulatory codebooks [1], analysis-by-
synthesis [2], and a number of continuous non-linear map-
ping techniques [3].

Previous attempts at using neural networks for the inversion
task have generally used multi-layer perceptrons (MLPs) di-
rectly, estimating vocal tract shapes from spectral inputs.
To overcome the one-to-many mapping problem, one ap-
proach is to use multiple MLPs, each mapping a region
of articulatory space, with the appropriate MLP being se-
lected by a �nal dynamic programming search of the pos-
sible outputs [4]. Alternatively, a sequence of frames can
be presented to an MLP to incorporate context to alleviate
the uncertainty [5].

In contrast, our approach uses an MLP to synthesise spectra
from vocal tract shapes, and this avoids one-to-many map-
pings in the training of the MLP. This MLP is then used in
an analysis-by-synthesis procedure (Figure 1). The MLP is
computationally e�cient and provides a convenient means
of obtaining derivatives for the overall system optimisation.
However, as with other analysis-by-synthesis schemes, this
method is vulnerable to local optima in the search space,
which we address with a hierarchy of MLPs (see Section 6).

In this paper we �rst describe an analysis-by-synthesis
scheme which allows the use of a general nth order model
for the articulatory dynamics, and then how the articula-
tory synthesiser in this scheme can be replaced by an MLP.
Finally, we address the problem of initialising this system,
in order to reduce its vulnerability to local optima.

2. ANALYSIS-BY-SYNTHESIS

To estimate a vocal tract shape sequence, A(t), a cost func-
tion, C, is minimised which consists of two components:
the acoustic di�erence between the observed speech and
that synthesised from A(t), and a continuity cost on A(t)
(Equation 1). These two components are combined using a
weighting factor, k, which applies an appropriate scaling to
the two costs [1].
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Figure 1: Using an MLP in an analysis-by-synthesis
scheme with the inclusion of dynamic constraints.

The �rst component gives the acoustic cost: the di�erence
between the observed speech spectral vector, cot, and the
synthesiser spectral output vector, f (At), given the pro-
posed vocal tract shape vector at time t, At.

The second component, the dynamic or continuity cost,
gives the deviation of the vocal tract time sequence, A(t),
from some linear dynamic model, in this case a general sec-
ond order model H(z) = 1=1 + a1z

�1 + a2z
�2.

We have described an approach to �nding a sequence of
vocal tract shapes that minimises C using a codebook of
shapes, and Dynamic-Programming [1]. It is limited in
practice to �rst-order continuity costs, produces quantised
results, and is quite expensive.

The gradient of C with respect to the articulatory param-
eters is given by

@C

@At

= 2k: Jf (At)
T
:
�
f (At)� cot

�
+ 2

��
1 + a21 + a22

�
At

+a1 (a2 + 1)
�
At�1 +At+1

�
+ a2

�
At�2 +At+2

��
(2)

where Jf (At) is the Jacobian matrix of function f (A) for
a given vocal tract shape At, the elements given by

Jf (At)(i;j) =
@fi (At)

@Ajt

(3)

We have experimented with a successful but computation-
ally expensive scheme in which an articulatory synthesiser
is used directly in the analysis-by-synthesis loop [6]. The
Jacobian was estimated by perturbing along each axis of
the articulatory space Ajt.

In contrast the MLP is less expensive to use as a synthesiser,
and in particular the required derivatives can be computed
by back-propagation.

The training of such an MLP, and its subsequent use in our
analysis-by-synthesis system to estimate vocal tract shapes
is discussed in the next sections.
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Figure 2: The acoustic cost function for an [r] spectrum
with two articulatory parameters (a) without and (b) with
distributed losses taken into account.

3. ARTICULATORY-ACOUSTIC

MAPPING

We have used 10th order RPS-weighted PLP cepstral coef-
�cients [7] as the acoustic representation, cot, and a four-
parameter constrained version of the Distinctive Regions
Model [1] [8] as the articulatory representation, At.

Our studies of the articulatory-acoustic mapping have
shown that the inclusion of realistic distributed losses into
the vocal tract model introduces a useful stability to the
conversion between the two domains [6]. We illustrate fur-
ther this characteristic in Figure 2, which shows the acoustic
cost as a function of two articulatory parameters, for a par-
ticular target spectrum. As the whole tract shape is here
de�ned by four articulatory parameters, the �gure shows a
two-dimensional slice through a four-dimensional articula-
tory space. Darker regions correspond to areas of the space
where the acoustic output of the model is closer to that of
the observed speech, in this case an [r] sound.

It can be seen from Figure 2 that the use of losses, besides
making the mapping more realistic, results in a smoother
acoustic cost function, implying a smoother articulatory-to-
acoustic mapping. This is important for iterative gradient
descent techniques, which perform better on such smooth
error curves, and also for the success of an attempt to ap-
proximate the mapping with an MLP.

Figure 2 also exhibits an example of the many-to-one map-
ping, as two distinct regions of the articulatory space give
a good �t to the observed acoustics. Closer examination
of this function in all four dimensions reveals that these re-
gions do not constitute a distinct bimodality, but are in fact
connected in a banana-like shape. Despite this connection,
such a complex region of low acoustic cost could conceiv-
ably `capture' (in a sub-optimal solution) an iterative search
which simultaneously tries to minimise a continuity cost.
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Figure 3: Final training error for di�erent MLP topologies.
MLPs with 10 to 30 units in each hidden layer are shown.
The MLPs used in Section 6 are highlighted. For reference,
the rms `error' with respect to the mean of the training data
is 0.38.

4. MLP TRAINING

Various sizes of MLP from a simple linear net to a two
hidden-layer net with 30 units in each hidden layer were
trained with the mapping, supplied in the form of an artic-
ulatory codebook with 50625 elements. 10% of the train-
ing examples were reserved for cross-validation, the error
of which failed to turn upwards with continued training in
each case. This, together with the pro�le in Figure 3, would
seem to justify the use of an even larger net.

Figure 3 shows the �nal training error of the MLP with
respect to the training data against the MLP size. It can be
seen that MLPs with two hidden layers consistently give a
more faithful mapping for the same number of weights than
those with one hidden layer, suggesting that the mapping
is better approximated by a smaller number of higher-order
functions. The �nal training error of the linear net is also
shown (top left) for comparison.

5. TESTING AND INITIALISATION

After training the MLP, it can be used in the analysis-by-
synthesis scheme of Figure 1. For a 2-hidden-layer net with
30 units in each hidden layer, the vocal tract shape esti-
mates from this scheme gave a superior acoustic �t than
quantised codebook estimates. This is despite the fact that
this same codebook is used for the MLP training, and shows
that the MLP generalises well between the training points.

To give a fair assessment of the shape estimates A(t), the
original articulatory synthesiser, as opposed to the MLP
approximation, should be used in the calculation of the
acoustic �t. For example, when the above experiment was
repeated for some of the smaller MLPs the acoustic error
increased. This was despite the fact that the optimiser er-
ror calculated using the MLP was decreasing, showing the

(a)

(b)

(c)

Figure 4: MLP analysis-by-synthesis for the utterance
`Why were you away a year Roy'. PLP-derived spectro-
grams are shown of (a) the original speech, (b) the spectral
output of the vocal tract shapes used for initialisation from
a very small articulatory codebook (81 entries), and (c) the
spectral output of the optimised vocal tract shapes.

disparity between the actual mapping and the (in this case
oversimpli�ed) MLP approximation.

Since we are using a local, gradient-based search technique
with non-linearities, it is not surprising that it is possible
for the process to become stuck in local minima of C. Ini-
tialization with a static uniform tube is not adequate, but
in experiments with the use of the codebook-based method
[1] to initialise the search, it was found that a codebook
with only 81 entries was adequate to avoid local minima for
the example in Figure 4.

6. LINEAR MLP INITIALISATION

Smoother mappings, which yield smoother error functions,
have the advantage that local minima in the error curve are
less frequent. An approach to avoiding such local minima in
gradient descent is to �rst �nd a minimum of a smooth ap-
proximation of the given error curve, and use this solution
to provide the initialisation of the gradient descent of the
original unsmoothed error curve. More generally, we can
gradually increase the complexity of the mapping during
the estimation procedure, starting with a smooth mapping
which gives few local minima, and then, as A(t) converges
towards some approximate solution, the mapping can be
made less smooth and more accurate, to give a more accu-
rate solution.

Simpler (or in other words, smaller) MLPs provide
smoother mappings. This has been observed from the
acoustic cost functions that di�erently-sized MLPs yield.
In the special case of a linear mapping (no hidden lay-
ers), no secondary minima can occur as the error function
is quadratic from Equation 1 (despite the fact that linear
mappings can be many-to-one).



(a)

(b)

(c)

(d)

(e)

Figure 5: Linear MLP initialisation of MLP analysis-by-
synthesis of utterance `Why were you away a year ago Roy'.
PLP-derived spectrograms are shown of (a) the original
speech, and the spectral output of the vocal tract shapes of
(b) the uniform tube initialisation, and after optimisation
using (c) the linear MLP, (d) a 2 hidden-layer MLP with 10
hidden units in each layer, and �nally (e) a 2 hidden-layer
MLP with 30 hidden units in each layer.

Such an approach has proved e�ective as an initialisation
procedure for the MLP analysis-by-synthesis. Starting with
a linear net, and gradually increasing the size of the MLP
used, gradient descent is carried out on the resulting cost
function of Equation 1, each time the solution used to ini-
tialise the gradient descent of the successive, more accurate
cost function. In Figure 1, this is simply changing the ar-
ticulatory synthesiser section during the optimisation while
keeping A(t), and all other things the same. This is very
similar to the Graduated Nonconvexity algorithm described
by Blake [9].

Figure 5 shows an example of applying this approach to
the MLP analysis-by-synthesis, where a hierarchy of MLPs
of increasing complexity have been used to obtain accurate
articulatory estimates while avoiding local minima. The
MLP is changed twice: from a linear net to a two hidden-
layer net with 10, and then 30 units in each hidden layer.

An important question that must be answered is: does this
satisfactorily resolve the one-to-many problem? Intuitively,
a smoothed error function where a bimodality previously
existed would be a shallower error curve whose minima

would lie somewhere between the two original minima. The
dynamic contribution to the cost function would dominate
such a shallow curve, and so the dynamic costs here provide
some alleviation of the one-to-many problem as desired by
the inclusion of such a constraint.

7. CONCLUSIONS

An MLP has been successfully used as a synthesiser in an
iterative analysis-by-synthesis technique, signi�cantly re-
ducing the computational e�ort in estimating vocal tract
shapes from the speech signal. For successful training of
this MLP, it is bene�cial to incorporate losses into the artic-
ulatory model used to provide the training examples. This
serves not only to improve the synthesis realism, but also to
smooth the mapping: necessary for the success of both the
MLP approximation and any subsequent gradient descent
techniques.

It was found that the analysis-by-synthesis technique is sen-
sitive to its initialisation, and an initialisation procedure us-
ing a linear net has been developed in order to avoid local
minima in the solution space.
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