
ABSTRACT

A new blind deconvolution method is proposed for recovering
an unknown source signal, which is observed through two
unknown channels characterized by non-minimum phase impulse
response filters. Conventional methods cannot estimate the non-
minimum phase parts. Our method is based on  computing the
eigenvector corresponding to the smallest eigenvalue of the input
correlation matrix and using a cost function to determine the
order of the impulse response filter model.  Multi-channel inverse
filtering with the estimated impulse responses is used to recover
the unknown source signal. Sub-band processing is also used to
reduce the complexity of dealing with long impulse responses
such as room impulse responses. Computer simulation shows
that the effectiveness of our method.

1.  INTRODUCTION

When a speaker is some distance away from the microphone in a
teleconferencing situation,  the speech signal is distorted by room
reverberation, so it is less intelligible to the listeners. One way to
achieve nearly perfect dereverberation of speech is to perform
inverse filtering using two microphones [1]. This method requires
the room impulse responses of sound transmission channels to
be known in advance, but there has been no practical way to
know the impulse responses between the human mouth and
microphones.

A blind deconvolution method [2] based on multichannel
inverse filtering has been proposed for estimating the impulse
responses from the reverberant signals and recovering the source
signal. The most significant problem with this method is that it
is difficult to determine the order of the impulse response filter
model. Wang [3] proposed a criterion for determining the modeling
order for minimum phase impulse responses, but estimating the
impulse responses accurately is still difficult because room impulse
responses are usually non-minimum phase.

This paper proposes a method for determining the order of
the impulse response filter model and estimating impulse responses
that may be non-minimum phase. This method is based on a cost
function that is minimized when  there are no non-common zeros
between the two observed signals. If there are no common zeros
between the system transfer functions of the two unknown
channels, the source signal can be recovered  by minimizing the
cost function. Since the impulse response of a room is usually
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too long to deal with, sub-band processing [4] is also introduced
to reduce the computational complexity.

2.  PRINCIPLE

The proposed method consists of two stages, as shown in Figs.
1(a) and (b). First, the impulse responses are estimated for various
modeling orders. Next, the optimum order is determined, and
then the source signal is recovered by using multichannel inverse
filters for the estimated impulse responses of the optimum order.

2.1  Estimation of impulse responses

Consider sound picked up by two microphones in a room, as
shown in Fig. 1(a). Let x(n) represent the sound-source signal,
let m1(n) and m2(n) represent the signals received at the two
microphones,  and let c1(n) and c2(n) represent the impulse
responses of the two acoustic paths. Signals m1(n) and m2(n)
pass through FIR filters  h2(n,i) and h1(n,i),  respectively, where i
represents the filter order. Note that the subscripts of h1(n,i) and
h2(n,i) are reversed in Fig. 1(a). One of the filtered signals is
subtracted from  the other to generate error signal ea(n,i) for
order i.

Let’s assume that impulse responses c1(n) and c2(n) can be
modeled using FIR filters with order j and there are no common
zeroes in the z-transforms of c1(n) and c2(n). Then

              ea(n,i) = x(n)*{c1(n)*h2(n,i) - c2(n)*h1(n,i)}, (1)

where the symbol * represents convolution.
Here, if i  = j  and ea(n,i) = 0 for  all n ,  then  h1(n,i) and h2(n,i)
satisfy

 h1(n,i) = α c1(n)
        h2(n,i) = α c2(n),  (2)

where α  is an arbitrary constant. Thus, h1(n,i) and h2(n,i) can be
considered estimates of c1(n) and c2(n).

2.2  Computation based on eigenvector

However, since ea(n,i) does not reach zero exactly because of
computation and measurement errors,  we compute h1(n,i) and
h2(n,i) that minimize the mean squared value of ea(n,i). The



mean squared error E{ea
2(n,i)} is written as

 E{ea
2(n,i)} = E{hT(i)m(i)mT(i)h(i)}
          = hT(i)R(i) h(i), (3)

where h(i) is the filter coefficient vector [h2(0,i) h2(1,i) ..... h2(i,i)
-h1(0,i) -h1(1,i) .... -h1(i,i)]

T, m(i) is the input signal vector [m1(n)
m1(n-1) ..... m1(n-i) m2(n) m2(n-1) .....  m2(n-i)]T, R(i)
=E{m(i)mT(i)} is the input correlation matrix, and E{} represents
expectation. The vector h(i) that minimizes E{ea

2(n,i)} keeping
the norm || h(i)|| constant can be derived as the eigenvector
corresponding to the smallest eigenvalue of R(i).

2.3  Determination of optimum order and source recovery

The order of c1(n) and c2(n) is usually unknown. Thus, if filter
order i is not an appropriate value to model  the impulse responses
c1(n) and c2(n), then h1(n,i) and h2(n,i) calculated by (3) do not
satisfy (2).

A cost function is introduced to determine the optimum
value of filter order i. It is based on multichannel inverse filtering
theory [1]. Figure 1(b) shows the scheme for deriving the cost
function. First, the multichannel inverse filters g1(n,i) and g2(n,i)
for h1(n,i) and h2(n,i) are derived by solving the following
diophantine equation:

                  G1(z,i)H1(z,i) +  G2(z,i)H2(z,i) = 1,  (4)

where G1(z,i), G2(z,i),  H1(z,i), and H2(z,i) are the z-transforms of

Figure 1. Two-channel blind deconvolution framework  for non-
minimum phase impulse responses:
(a) estimating impulse responses  for a given modeling order   ; 
(b) searching for optimum order  and  recovering the source signal.
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g1(n,i), g2(n,i),  h1(n,i), and h2(n,i). Then the inverse filters g1(n,i),
g2(n,i) are applied to the received signals m1(n) and m2(n) in
order to generate the recovered signal  x’(n,i). The recovered
source signal   x’(n,i) for order i is written as

    x’(n,i) = m1(n)*g1(n,i) + m2(n)*g2(n,i). (5)

Now, the cost function PE(i) is defined as

 PE(i) = E{eb1
2(n,i)}/E{m1

2(n) }+ E{eb2
2(n,i)}/ E{m2

2(n) },     (6)

where
         eb1(n,i) = m1(n) - x’(n,i)*h1(n,i)

       eb2(n,i) = m2(n) - x’(n,i)*h2(n,i).

This cost function evaluates how well the estimated impulse
responses h1(n,i) and h2(n,i) and the recovered source signal x’(n,i)
approximate the actual reverberant signals m1(n) = x(n)*c1(n)
and m2(n) = x(n)*c2(n).

If and only if PE(i)=0; that is, eb1(n,i) =0 and eb2(n,i) =0,
then

   h1(n,i) = α c1(n)
h2(n,i) = α c2(n)

                 x’(n,i) =1/α  x(n),                                        (7)

where α  is an arbitrary constant. The optimum order of the
estimated impulse responses is determined such that it minimizes
the cost function PE(i). The estimated impulse responses h1(n,i)



and h2(n,i) and the recovered source signal x’(n,i) with the optimum
order are used as the final estimates.

2.4  Simulation for short impulse responses

To confirm the validity of the proposed method, we simulated
two-channel blind deconvolution for non-minimum phase impulse
responses. The reverberant signals were obtained by convolving
the source signal with the two non-minimum phase impulse
responses c1(n) and c2(n) shown in Fig. 3. The order of the
impulse responses was 30.

The optimum order was searched for between 3 and 50.
Figure 2 shows that the optimum order, i.e., the one that minimizes
the cost function PE(i), is 28. Although this optimum order differs
from the original order 30, it is reasonable because there was a
two-tap delay at the head of the impulse responses, as shown in
Fig. 3, and the delay was extracted as common zeros through the
computation.

Figure 3 compares the original impulse responses with the
estimates containing the two-tap delay and shows that the
estimated impulse responses h1(n,i) and h2(n,i) are good
approximations of the original responses c1(n) and c2(n).

The result of deconvolution for an impulse source signal
is shown in Fig. 4. The reverberant signal is overlaid on the
recovered source signal. The reverberant part of the recovered
signal is suppressed well.

3.  COMBINATION WITH SUB-BAND PROCESSING

3.1  Procedure of combination

Room impulse responses are often too long (more than 1000
samples) to deal with. It is difficult to compute the eigenvector
and inverse filters of this order  with sufficient precision and
reasonable speed.

Sub-band processing [4] is a way of dealing with the
problems mentioned above. The down-sampling of sub-band
signals by the sub-band processing reduces the effective order of
impulse responses. In the combination of the two-channel blind
deconvolution and sub-band processing shown in Fig. 5, the
process is: (i) The signals are divided into hundreds of sub-bands.
(ii) The sub-band signals are down-sampled.  (iii) The two-channel
blind deconvolution is applied to each sub-band signal. (iv) The
full-band signal is reconstructed by up-sampling  and summing
up the recovered sub-band signals.  An arbitrary constant of
each recovered signal is determined by equalizing the power of
the recovered signal to the power of the source signal in each
sub-band.  Note that this step is not blind, i.e., it uses the
information about the source signal power.  However,  if we can
approximate the power of the source signal by the power of the
received signals in each sub-band, this step becomes completely
blind.

3.2  Simulation for room impulse responses

We performed computer simulation using room impulse responses
was conducted to investigate the effectiveness of our method

Figure 3.   Estimates  (solid  lines)  and originals  (broken  lines)  
of  two  unknown impulse responses that are non-minimum phase.

Figure  4.   Result  of   deconvolution  using the proposed 
method. The solid line is the recovered signal of an impulse 
source and the broken line is the original  impulse  signal  
distorted by reverberation.    

Figure 2.  Optimum order of the estimated impulse responses. 
The arrow points to the minimum value at the optimum order.
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with sub-band processing. The impulse responses were measured
in a room whose reverberation time was 0.5 s. The distances
between the sound source and microphones were 3 m and 4 m,
and the sampling frequency was 12 kHz. The impulse responses
were truncated to be 3000 samples, i.e. 250 ms as shown in Fig.
6. The number of sub-bands was 200, and the down-sampling
and up-sampling rates were both 100.

Figure 7 shows the recovered impulse signal. The power
of the non-pulsive part or reverberant part  was decreased about
5 dB by our method.  However, the recovered impulse signal
was delayed by more than 500 ms and included a non-causal
reverberant part which  caused unnatural sound. These phenomena
are due to the sub-band processing.



4.  CONCLUSIONS

Our new method for achieving blind deconvolution can estimate
non-minimum phase impulse responses from two-channel
reverberant signals and recover the source signal.  Computer
simulation showed that it can achieve nearly perfect blind
deconvolution for short impulse responses.  For long (several
thousand) impulse responses, such as room impulse responses,
we introduced sub-band processing to reduce the computational
complexity. The power of the reverberant part of a room impulse
response was decreased about 5 dB by this method.  For further
improvement in performance,  we plan to study optimizing the
sub-band processing.
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Figure 5. Block diagram of combination of two-channel blind deconvolution and 
sub-band processing.
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