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ABSTRACT

This paper proposes new neural network approaches for
separating and restoring signals mixed through FIR chan-
nels. Firstly, a set of maximal entropy based train rules
are developed. Secondly, a new scheme for restoring the
original signals is proposed for the 2 � 2 case. Computer
simulation results for speech signals are presented to verify
the proposed approaches.

1. INTRODUCTION

Blind signal separation is a fundamental and challenging
problem in signal processing which has received a great deal
of attention in recent years [1-10]. Most of the work on
blind signal separation done so far considers only the case
of instantaneous combination [7]. However, in many practi-
cal situations, the measurements are convolutive mixures of
the original signals. Compared to the instantanous combi-
nation, the problem of separating signals mixed in convolu-
tive environment is much more di�cult. One of the major
issues is to develop e�ective separation algorithms [3, 4, 5,
9] for this case. Of various approaches, the Neural Network
technique using maximal output entropy algorithm [10] is
especially attractive due to its simplicity in implementaion.
However, for the case of convolutive mixing, there are some
di�culties in deriving the training rules because the rela-
tions between the probility density functions (pdf) of the
measurements and the outputs are too complicated to be
expressed in analytical forms. Recently, as an e�ort to sep-
arate convolutive mixed speech signals, a set of algorithms
for training the separation �lter coe�cients have been pro-
posed [9].

The other problem associated with the blind separation of
signals mixed in convolutive environment is the restoration
of the original signals. It has been shown that even though
the signals are separated, the resulting separated outputs
are still unknown convolved versions of the signal sources
rather than the original signals [3, 5]. If the original signals
are of interest, a blind deconvolution module is still neces-
sary in addition to the blind separation module.

The purpose of this paper is twofold. Firstly, it presents a
set of new training rules on the basis of maximal entropy [10]
for the separation network consisting of FIR �lters. Com-
pared to the previous work [9], we not only consider the
e�ect of instantaneous measurements, but also the e�ect
of the delayed measurements, because the delayed mea-
surements have equal contribution to the outputs as the
non-delayed measurements do. Secondly, we propose an
approach which can restore the original signals from the
separated outputs.

2. THE NEW TRAINING RULES

Considering the N�N separation network depicted in Fig-
ure 1. Assuming that the separating network consists of
causal FIR �lters, the outputs are as follows:

ui =

LX
k=0

wi1;kx1;k +

LX
k=0

wi2;kx2;k + :::+

LX
k=0

wiN;kxN;k

i = 1; 2; :::;N (1)

where wij;k denotes the coe�cient associated with delay k
of the FIR �lter from jth measurement to ith output, and
L is the length of the separation �lters, which are assumed
to be the same for all the �lters. The purpose is to work out
the training algorithm to maximize the joint entropy of the
auxiliary outputs, yi shown in Figure 1, given as follows:

H(YN ) =

Z
fY (YN )logfY (YN )dYN (2)

where YN = (y1; y2; :::; yN ), while fY (YN ) is the joint pro-
bility desity function (pdf). It is obvious that the outputs
not only depend on the instantaneous measurements, but
also on delayed version of them. In order to have the com-
plete consideration of all the measurements (including the
delayed ones), we have to evaluate the relationship between
the joint pdf of x's and the joint pdf of y's. Given that

fY (YN ) =
fU(UN )

C
(3)

where UN = (u1; u2; :::; uN ), and C is the Jacobian determi-
ant from UN to YN . Hence we need to work out the relation
between fU (UN) and the pdf of x's. This is a di�cult task
because the number of x's, N(L+ 1), is di�erent from the
number of u's, N . Hence we can not directly use the Jaco-
bian. One way to solve this problem is to construct another
NL u's, ui (i = N + 1;N + 2; :::;NL+N), in a convenient
way so that the number of u's is the same as the number
of x's. In this case the joint pdf of ui (i = 1; 2; :::;NL+N)
can be obtained on the basis of the Jacobian and the pdf of
x's. Then we can get the joint pdf of u1; u2; :::; uN by com-
puting the marginal pdf of u1; u2; :::; uNL+N . One possible
choice for constructing the NL u's is to simply to copy NL
measurements except those associated with delay k, that is,

umN+i =
n

xi;m; m = 0; 1; :::;L(m 6= k); i = 1; 2; :::;N
ui; m = k; i = 1; 2; :::;N

(4)

Given the above choice of u's, it can be shown that the Jaco-
bian determinant from x's to u's, denoted as Dk, is simply
the Jacobian determinant from xi;k (i = 1; 2; :::;N) to ui



(i = 1; 2; :::;N). The joint pdf of the u's is thus obtained as
follows:

fU(u1; u2; :::; uN ) =

R
fX [G

�1(U)]duN+1duN+2:::duNL+N

Dk

(5)

where G() represents the mapping between x's and u's. It
can be shown that Equation (5) can be written in the form:

fU(u1; u2; :::; uN )jU=X
k
=

fX(x1;k ; x2;k; :::; xN;k)

Dk

(6)

Now let us go back to the joint entropy of y1; y2; :::; yN . By
using Equations (3), (5) and (6) it can be shown that

H(y1; y2; :::; yN ) = H(Xk)�E[lnC]�E[lnDk] (7)

where Xk = [x1;k; x2;k; :::; xN;k]. The training rules for a
�lter coe�cients can be obtained by calculating the gradi-
ent of the joint entropy with respect to that coe�cient. It
is obvious that the �rst term is the entropy of the measure-
ments with delay k which are not related to the separating
network. Hence the training rule should be determined by
the second and third term. Assuming yi =

1

1+e�ui
, the re-

sults can be obtained as follows:

4wij;k / (1� 2yi)xj;k +
Dij;k

Dk

(8)

and

4wij;l / (1� 2yi)xj;l; if l 6= k (9)

where Dij;k is the cofactor of Dk associated with excluding
the (i; j)th element. When k = 0, the above results are the
same as the training rules proposed in [10]. It is interest-
ing to note that the training rules for the coe�cients with
delay k, given in Equation (8) are di�erent from those for
other coe�cients in Equation (9). This is unfair when we
see that all the coe�cients have the same contribution to
u's. In other words, it is more reasonable that all the coef-
�cients have the same form of training rules.

A training rule which equally considers each of the measure-
ments can be obtained as follows. We only use Equation (8)
to update wij;k, while disregarding the results in Equation
(9). In other words, for deriving the training rules for wij;k,
we simply employ the Jacobian from their associated mea-
surements xj;k to u's. This Jacobian is not used for deriving
the training rules for other coe�cients. This is reasonable
because the e�ect of xj;k on u's is dependent only on their
associated weights wij;k, while the other coe�cients are ir-
relevant. The resulting training rules for all the coe�cients
are the same as Equation (8), which is rewritten as follows:

4wij;k / (1� 2yi)xj;k +
Dij;k

Dk

; k = 1; 2; :::;L (10)

Computer simulations are performed on the above training
rules for the 2 � 2 separation system illustrated in Figure
2, where the two measurements are combinations of two
speech signals through various mixing network parameters.
Some of the results is illustrated in Figures 3 and 4. We
have simulated the following situations:

(a). Both the mixing �lters and the separation �lters are of
fourth order, where the coe�cients of the mixing �lters are
given as follows:

H11=[1 0.6 0.45 0.34 0.3] and H12=[0.75 0.5 0.31 0.25 0.2]
H21=[0.78 0.63 0.45 0.25 0.1] and H22=[1 0.65 0.35 0.23 0.2]

(11)

The results are shown in Figure 3. Clearly good separation
is obtained.

(b). The mixing �lters and the separation �lters are of
tenth order, where the coe�cients of the mixing �lters are
as follows:

H11=[1 0.8 0.7 0.5 0.3 0.3 0.2 0.2 0.2 0.18 0.15]
H12=[0.7 0.65 0.5 0.43 0.37 0.3 0.25 0.2 0.17 0.15 0.13]
H21=[0.78 0.63 0.55 0.45 0.31 0.29 0.24 0.21 0.2 0.11 0.1]
H22=[1 0.85 0.77 0.55 0.43 0.31 0.27 0.25 0.21 0.19 0.14]

(12)

The simulation results for this situation are given in Figure
4. It is seen that the separation is still considerable.

It is found in our simulations that the performance is highly
dependent on the complexity of the mixing network. When
the order of the mixing �lter is small (for example, less than
10), good separation result can be attained. The perfor-
mance becomes worse when increasing the number of order
of the mixing �lters. It is also found that the performance
of the algorithm is sensitive to signal magnitudes, the learn-
ing rate and the initial values of coe�cients. In our simula-
tions, the speech signals are scaled within the range [-1 1],
the learning rate is 0.00001, initial vaules of coe�cients are
wij;k = 1 for i = j and wij;k = 0 for i 6= j.

3. ORIGNAL SIGNAL RESTORATION BASED
ON IDENTIFICATION

The approaches proposed above are able to separate the
signals which are mixed in convolutive environments. How-
ever, in the general case the separated signals are unknown
convolved versions of the original signals. In this section, we
will develop a relationship between the separating newtork
and the mixing network. The relationship can be used to
identify the unknown mixing network. A restoration scheme
is established on the basis of the identi�cation results.

Consider the system depicted in Figure 2. The output sig-
nals in frequency domain can be written as follows:

U1(!) = [H11(!)W11(!) +H21(!)W12(!)]S1(!)

+[H12(!)W11(!) +H22(!)W12(!)]S2(!) (13)

and
U2(!) = [H11(!)W21(!) +H21(!)W22(!)]S1(!)

+[H12(!)W21(!) +H22(!)W22(!)]S2(!) (14)

where Hij(!)(i; j = 1; 2) are the frequency responses of the
unknown mixing systems, and Wij(!)(i; j = 1; 2) are the
frequency responses of the unknown mixing systems, which
are all assumed to be FIR �lters. As indicated, there have
been a number of blind signal separation techniques. There-
fore it is reasonable for us to assume that the signals has
already been separated. In this case there are two possi-
ble results described as follows: (1) U1(!) contains S1(!)
only and U2(!) contains S2(!) only, and (2) U1(!) contains
S1(!) only and Y1(!) contains S1(!) only.

Let us consider the �rst case. From Equation (13) and (14)
we have:

H11(!)W21(!) +H21(!)W22(!) = 0 (15)

and
H12(!)W11(!) +H22(!)W12(!) = 0 (16)



here we have assumed that S1(!) and S2(!) are not zero.
Equation (15) and (16) can be interpreted as the cases in
Figure 5 and Figure 6 respectively. These situations are
exactly the same as that in [6], in which similar conditions
as indicated in Equation (15) and (16) can be used to iden-
tify the unknown mixing �lters, as long as the following
conditions are satis�ed:

a. The polynominals Hij(!) , the Fourier trans-
form of hij(t)are coprime or do not share any com-
mon roots;
b. The input si(t) has 2L + 1 or more modes, or
it can be expressed as a linear sum of 2L+ 1 ex-
ponentials, where L is the maximun order among
hij(t) for i = 1; 2.

The unknown mixing �lters can be identi�ed by the follow-
ing equations [6]:

H12(!) = �W12(!);H22(!) = W11(!) (17)

and
H21(!) = �W21(!);H11(!) = W22(!) (18)

Substituting Equations (15), (16), (17) and (18) into (13)
and (14) gives:

U1(!) = C(!)S1(!)

U2(!) = C(!)S2(!) (19)

where C(!) = W11(!)W22(!)�W21(!)W12(!). Assuming
C(!) is invertible, the original signals can be restored by
passing the outputs through a �lter whose frequency re-
sponse is the reciprocal of C(!). Note that both channels
require the same �lter to restore the original signals.

For the other possible situation where U1(!) contains S2(!)
only and U2(!) contains S1(!) only. It can be shown that,

U1(!) = C(!)S2(!)

U2(!) = C(!)S1(!) (20)

It is interesting to note that the same restoration �lter is
used not only for both channels, but also for the two cases
considered. This result is very useful in that we do not need
to discriminate between the two above cases.

Now let us examine the performance of the proposed
restoration technique by looking at the impulse responses
from each of the two inputs to the two outputs. Firstly,
computer simulations have been performed on the above
restoration scheme using the examples given in Figure 4.
We have evaluated the impulse responses from the original
signal ports to the separation outputs and to the restoration
outputs. The results are given in Figure 7. Tij refers to the
impulse response from si to uj , while Vi;i are the impulse
response from ui to the restored outputs. It is seen that T12
and T21 are much smaller than T11 and T22, which means
that the two original signals are separated at the outputs in
that u1 contains s1 only and u2 contains s2 only, although
there is some leakage as reected by non-zero T12 and T21.
It is also clear that u1 and u2 are convolved versions of
the original signals, because both T11 and T22 are far from
delta function. However, it is seen that Vii are much closer
to delta function. Hence the proposed the proposed tech-
nique can e�ectively deconvolve the signals.

In order to verify the proposed technique further, consider
the example which was used in [5]. The two original signals
are a female voice singing without music and musical track
respectively. 5-tap mixing �lters were used to produce x1(t)

and x2(t) as arti�cal mixture of s1(t) and s2(t). 5-tap FIR
separating �lters were estimated using the constant diag-
onal algorithm proposed in [5]. It is seen from Figure 8
that the proposed restoration scheme can also deconvolve
the signals.

4. CONCLUSIONS

We have derived a set of new training rules for blind sepa-
ration systems consisting of FIR �lters. Computer simula-
tions with speech signals have been performed to verify the
performance of the proposed training rules. It was found
that good separation can be attained, although the signal
magnitude, learning rates and the initial values should be
carefully selected. We also proposed an approach to decon-
volve the separated signals in order to restore the original
signals. It is seen by computer simulation the proposed
restoration scheme can e�ectively deconvolve the signals.
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Figure 1. A blind signal separation system
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Figure 2. A 2X2 blind signal separation system
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Figure 3. Simulation results: (a) and (b) are the two
original signals, (c) and (d) are the measurements,
(e) and (f) are the separated results, L=4

5000 10000 15000
−5

0

5

5000 10000 15000
−5

0

5

5000 10000 15000
−5

0

5

5000 10000 15000
−5

0

5

5000 10000 15000
−5

0

5

5000 10000 15000
−5

0

5

(a) (b)

(d)(c)

(e) (f)

Figure 4. Simulation results: (a) and (b) are the two
original signals, (c) and (d) are the measurements,
(e) and (f) are the separated results, L=10
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Figure 7. Performance of the proposed restoration
scheme
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Figure 8. Performance of the proposed restoration
scheme


