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ABSTRACT

The multigrams allow us to split a string of symbols into a
stream of variable length sequences. The direct application
of this method to vector-quantized speech spectra fails, we
develop an extension of the method called modi�ed multi-
grams or multigrams with distance. The algorithm for mod-
i�ed multigram dictionary training as well as experimental
results are presented. We found a signi�cant improvement
of rate/distortion ratio in comparison to vector quantization
with small codebooks. For precise spectrum representation,
this method is less suitable and we see its application rather
in speech segmentation or in very low bit rate coding.

1. INTRODUCTION

In standard speech coding systems working on low bit rates,
the signal is modelized by source and �lter. The �lter pa-
rameters called \spectral vector" (determining the synthe-
sized speech envelope or shortly \spectrum") are usually
transmitted once per frame, without taking into account
the inter-frame dependencies. In our work, we investigated
the representation of spectral vectors on segmental basis.
The vector sequences are represented using a pre-trained
set of variable length sequences called multigrams. We used
two methods for the matching of input vectors with the se-
quences in the dictionary and for dictionary creation: clas-
sical multigrams [1, 4, 2], where the sequences of vector
quantized vectors are matched by symbol strings equiva-
lence, and modi�ed multigrams, where the choice is done on
minimum-distance basis.

2. CLASSICAL MULTIGRAMS

In this case, the string of vectorsX = x1 : : :xN is converted
to string of symbols W = w1 : : : wN by means of Vector
Quantization (VQ). The multigram method is described in
the articles of Bimbot et al. [1, 4, 2] and we limit us to
a brief description: The string of symbols W is segmented
into variable length (1 to n) sequences S1; S2; : : : Sq using
decision oriented likelihood maximization:

L(W ) = max
fBg

Y
k

p(Sk) (1)
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where p(Sk) are the probabilities of sequences and fBg is
the set of all possible segmentations. The number of all
these segmentations is large and we use a Viterbi-based al-
gorithm to �nd the optimal one. The probabilities of se-
quences are not known a-priori and we must create a dic-

tionary of sequences. After an initialization step, an itera-
tive procedure is run, consisting of segmentation (using Eq.
1) and of probabilities reestimation. As a result, we dis-
pose of a dictionary of Z characteristic sequences Mi with
associated probabilities p(Mi).

In the representation (coding) phase, the string is seg-
mented using Eq. 1 and the sequences are represented by
multigrams of the dictionary. In this case, the represen-
tation introduces the same spectral distortion as the VQ,
because the symbols in the input string and in the coded
one are equal.

3. MODIFIED MULTIGRAMS

Here, no conversion of input vectors to symbols is per-
formed, and the method uses a distance measure between
spectral vectors rather than symbol strings equivalence to
match the input vectors with the dictionary sequences. We
de�ne the distance of two sequences of vectors A = a1 : : :al
and B = b1 : : :bl of equal length l as the mean distance of
corresponding vectors:

D(A;B) =
1

l

lX
i=1

d(ai;bi) (2)

In our case, d(ai;bi) is the Euclidian distance.
Similarly as in the previous case, we are looking for the

segmentation of a string of vectors and for a set of rep-
resentative sequences of variable length, consisting here of
unquantized vectors: M i = mi;1 : : :mi;l

i
. The optimal

segmentation of X into sequences U1 : : :Uq of length 1 to
n is given by maximization of the quantity:

L
0(X) = max

fBg

Y
k

p
0(Mk) (3)

over the set of all possible segmentations fBg. The main
di�erence from the previous likelihood de�nition (Eq. 1) is
the use of penalized probability p0. It is no more a proba-
bility of a sequence but a modi�ed probability of the code-
multigram Mk representing the sequence Uk. The multi-
gram Mk is chosen among all multigrams of length l(Uk)



to minimize the distance D(Mk;Uk). The penalized prob-
ability is derived from the multigram probability (found in
the dictionary) by:

p
0
(Mk) = Q [D(Uk;Mk)] p(Mk) (4)

where p(Mk) is the probability of code-multigram Mk and
D(Uk;Mk) is the distance between this multigram and the
sequence Uk. The function Q[:] must penalize the probabil-
ity of multigram in function of its distance from the repre-
sented sequence. We used a simple partially linear function
de�ned by:

Q[D] =

�
1� D

Dmax
for D � Dmax

0 for D > Dmax

(5)

where Dmax is a constant giving the maximal distance for
which p0 may be nonzero. Similarly as for \classical" multi-
grams, we need a dictionary of code-multigrams. After ini-
tialization (see Subsection 5.3) the following iterative pro-
cedure consists of 3 steps:

� Segmentationwhich is found by maximizing the quan-
tity L0(X) (see Eq. 3).

� Reestimation of probabilities:

p(M) =
c(M)

C
(6)

where c(M) is the number of sequences represented
by multigram M and C is the total number of se-
quences in the optimal segmentation.

� Recalculation of code-multigrams - new multigramM
is calculated as a centroid of all sequences represented
by M in the optimal segmentation.

In the representation (coding) phase, the string is segmented
using Eq. 3 and the sequences of vectors are represented by
the multigrams in the dictionary. In this case, the distortion
introduced by the representation must be evaluated.

4. EVALUATION

The distortion SD introduced by the spectrum representa-
tion is evaluated as the mean over all frames of the loga-
rithmic spectral distance:

Dlog =

rZ �
10 log S(f)� 10 log Ŝ(f)

�2
df (7)

(in dB) where S(f) and Ŝ(f) are the power LPC-spectra
with original and quantized coe�cients respectively. As we
were working with LPC-cepstral vectors, this distance was
approximated by:

D̂log = �

vuut2

10X
i=1

(ci � ĉi)2 (8)

where � = 10=ln(10) is the conversion constant, and ci and
ĉi the original and quantized LPCC coe�cients.

In the rate evaluations, we compare the average num-
ber of bits necessary for the transmission of one spectral

vector for di�erent methods. For both VQ and multigrams,
it is the index pointing to a code-vector or code-multigram
which needs to be transmitted. We assume the ideal en-
tropy coding of those indices, so that the number of bits
necessary for the transmission of index i is log

2
p(oi), where

oi stands for code-vector yi or code-multigram Mi. For VQ,
the average rate for the training string is given by:

H(V ) = �

LX
i=1

p(yi) log2 p(yi) (9)

and for the test one by:

R(V ) = �

PL

i=1
ctest(yi) log2 p(yi)

Ntest

(10)

where ctest(yi) is the number of vectors of the test string
represented by code vector yi, and Ntest is the length of
the test string. For the multigrams (classical or modi�ed),
the average rate for the training string is given by:

H
0(M) = �

PZ

i=1
p(Mi) log2 p(Mi)PZ

i=1
l(Mi)p(Mi)

(11)

where l(Mi) is the length of multigram Mi, and for the test
string by:

R(M) = �

PZ

i=1
ctest(Mi) log2 p(Mi)

Ntest

(12)

where in this case, ctest(Mi) is the number of sequences
represented by multigram Mi.

5. EXPERIENCES

5.1. Database, Vector Quantization

Approximately 1 hour of mono-speaker telephone speech
with deleted pauses was used for the experiments. The
spectrum was parametrized by 10 LPCC coe�cients cal-
culated on 20 ms frames with 10 ms overlapping. The
corpus was divided into 213270 vectors for training and
122903 vectors for tests. The VQ codebook training was
performed by a simple LBG algorithm for codebook lengths
L = 2; 4; 8; 16; 32; 64; 128; 256; 512. The training and test
set of vectors were quantized using those codebooks and
we obtained 9 training and 9 test strings of symbols. The
rate-distortion curve of VQ (see Fig 1) was compared with
those obtained by multigram methods.

5.2. Classical multigrams

Experimental conditions and results for classical multigrams
applied to cepstral vectors were previously published in [5].
The summary of the results is the following: we obtained
strong decrease of H 0(M) in comparison to H(V ) for the
training strings, but catastrophical results (R(M) > R(V ))
for the test ones. This fact together with an enormous size
of the dictionaries proved a strong overlearning and inca-
pability of classical multigrams to represent sequences of
vector quantized spectral vectors due to their high variabil-
ity - we can say, that for larger codebooks of VQ, almost



each long sequence is unique. The main problem of clas-
sical multigrams is caused by the constraint of equivalence
between a sequence in the dictionary and on the input: the
modi�ed multigram method with distance notion is the re-
sult of e�orts to bypass this constraint.

5.3. Modi�ed multigrams

The crucial problem of the modi�ed multigram method is
the initialization of the dictionary. Not only we have to
choose the numbers of multigrams of di�erent lengths and
their initial values, but we must also initialize their prob-
abilities. In our experiences, we used the vector quantized
training string and classical multigrams without the itera-
tive re�nement for this step. For the VQ of dimension L,
the number of initial 1-grams is L. The sections of 2- to
n�grams were initialized each with 2L classical multigrams
with the highest probability (the symbols were converted
back to vectors).

The modi�ed multigrams were trained for maximal
length n = 5 and for initializations L = 2; 4; 8 : : : 512. Max-
imal distance Dmax was varied in the experiences from 0 to
1.0 with 0.1 step. The resulting rate-distortion curves for
L = 2; 8; 32; 128; 512 initializations are presented on Fig. 1.
For small initialization codebooks, we observe a \u"-like
curve indicating the decrease of distortion for a given rate.
For larger ones, this form does not appear, but the rate-
distortion curves are all situated below that of VQ. A de-
tailed example is given in Table 1: the comparison of dis-
tortions for approximately equal rate of 3.5-3.9 bits/vector.
We see, that for modi�ed multigrams with L = 512 initial-
ization, we obtain a 0.664 dB improvement of the distortion
(on the test string) in comparison to VQ with 16 code-
vectors. If limited to VQ, we would need 6.8 bits/vector to
reach the same distortion.

The changing of proportion of of 1- to 5-grams in the re-
sulting dictionary is illustrated on Fig. 2. When \relaxing"
the maximal distance, more longer multigrams appear, but
this \relaxation" has a negative e�ect on the overall distor-
tion.

Despite the results obtained with small dictionaries, for
a precise spectrum representation (for which we need on
contrary a large dictionary), the method is not completely
without problems:

1. the choice of maximal distance Dmax is critical for
the resulting ratio spectral distortion/entropy.

2. the computational load for large multigram dictio-
naries is signi�cantly higher in comparison to VQ.

3. the overlearning causes that the results obtained on
the learning string are not validated on the test one
(see Fig. 1, initialization L = 512).

5.4. Split vector quantization

In order to improve the precision of spectrum description
and decrease the computational load, we tested the combi-
nation of modi�ed multigrams and split vector quantization
(SVQ). The vector of cepstrum coe�cients was divided into
3 subvectors (with 3, 3 and 4 coe�cients) and the modi�ed
multigrams were applied to each of them independently.
After vector quantization with L1 = 256; L2 = 64; L3 = 64

and classical multigram initialization, we performed the dic-
tionary training for maximal distances Dmax = 0:0 : : : 1:0.
For Dmax = 0:2 for all three subvectors, we obtained the
sum of rates per symbol 7.359 bit. When reassembling the
quantized vectors, we could evaluate the overall spectral
distortion which was 2.232 dB. When comparing this point
with Fig 1, we see, that a simple VQ performs better than
this sophisticated method. Another problem was the insta-
bility of synthesis �lters with cepstral coe�cient quantized
on the sub-vector basis.

VQ H(V ) SDtrain R(V ) SDtest

L=16 3.881 2.892 3.838 2.841

MMG Dmax H 0(M) SDtrain R(M) SDtest

L=16 0.3 3.797 2.826 3.776 2.785
L=32 0.4 3.563 2.514 3.523 2.498
L=64 0.4 3.647 2.349 3.613 2.356
L=128 0.4 3.602 2.235 3.595 2.270
L=256 0.4 3.574 2.143 3.647 2.211
L=512 0.4 3.544 2.055 3.701 2.177

Table 1: Comparison of VQ and modi�ed multigrammes
with di�erent initializations for approxiamtely equal rate of
3.5-3.9 bits/vector.

6. COMPARISON WITH VVVQ

The Variable to Variable Length Vector Quantization
(VVVQ) introduced by Chou and Lookabaugh in [3] can
be compared to modi�ed multigrams approach. The en-
tropy constrained quantization of variable length sequences
of spectral vectors by symbols of variable length uses the
same tools as our method: Viterbi-based segmentation of
the string of vectors and entropy coding of transmitted sym-
bols. However, the criterion of the optimal segmentation
di�ers: in our case, the multigram Mk representing the se-
quence Uk is chosen in order to minimize the distance and
only then, its probability is penalized by this distance (see
Eqs. 4 and 3). In [3], the distortion and rate are minimized
jointly, using a Lagrange multiplicator in the segmentation
formula:

Bopt = argmin
fBg

X
k

[d(Uk;Mk)� � log
2
p(Mk)] (13)

(when using the same notations as in Section 3). The com-
parison of performances of those two methods was unfor-
tunately not possible due to using of di�erent speech data
and of di�erent distance evaluation.

7. CONCLUSION

In our work we tested the performances of di�erent multi-
gram methods when applied to speech spectra representa-
tion. The ideal result would be an improved rate/distortion
ratio for arbitrary precision of spectrum description.

First, classical multigrams were used to represent the se-
quences of vector quantized vectors. The results, described
in detail in [5], are not satisfactory: only for small VQ code-
books we are able to �nd the typical sequences, for larger
ones, this method performs well only for training strings
which is a proof of an overlearning.
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Figure 1: Rate-distortion curves for VQ and modi�ed multigrams (MMG). Lines: dashdot - VQ learning, dotted - VQ
test, solid - MMG learning, dashed - MMG test. The couples of MMG curves stand from top to bottom for initializations:
L = 2; 8; 32; 128; 512.
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Figure 2: Modi�ed multigrams with L = 512 initialization:
1- to 5-grams proportions as a function of Dmax.

The method of modi�ed multigrams performs better in
terms of generalization of typical spectral sequences. By
the introduction of distance, we attain a certain 
exibility
in comparison to classical multigrams. However, for precise
spectrum representation with large multigram dictionaries,
the problems persist and are mentioned in Subsection 5.3:
in these cases, the method is also disposed to overlearning
and the computational load is signi�cant.

Multigrams were tested with SVQ, too, but without a
great succes. The instability of synthesis �lter could be im-
proved by using other coe�cient than LPCC or by polynom
stabilization, but it is not probable that modi�ed multi-
grams used with SVQ would perform better than SVQ it-
self.

We can conclude, that the performance of multigrams

in speech spectrum representation is not fully satisfactory
and that their use in direct coding of spectral parameters
is arguable. However, these methods are an excellent tool
for detecting the typical patterns of variable length. In
our opinion, the major domain of use of multigrams is in
conjunction with time alignment methods (DTW, temporal
decomposition) as a preprocessing for another method of
representation. Our future work will be conducted in this
direction.
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