
ABSTRACT
In the context of vector quantization (VQ) of the line

spectrum frequency (LSF) parameters, we determine
experimentally a spectral distribution of quantization
error perceived to be “balanced”, i.e., error at all frequen-
cies contributing equally, on average, to the perceived dis-
tortion. Quantizers which have a balanced distribution
should outperform those which don’t, given the same
number of bits. We examine the spectral error distribu-
tions produced by various weighted Euclidean distance
measures in the LSF domain and develop one which pro-
duces a quantizer having an approximately balanced dis-
tribution. This quantizer’s performance is compared with
that of others having different error distributions.

1. INTRODUCTION
The short term speech spectrum contains important

information and is therefore quantized and transmitted
by many speech coding algorithms. This information is
often determined by linear prediction and can be repre-
sented by many spectral parameter sets such as predictor
coefficients, log area ratios, reflection coefficients, LSF’s,
etc. Accurate representation of the spectrum using as few
bits as possible is desired. Prior research has shown that
VQ of the LSF parameters is a relatively efficient method
for minimizing the number of bits needed to represent the
speech spectrum. An example is the new 2400 bps MELP
coder which uses a 25 bit, multi-stage vector quantizer
(MSVQ) to encode 10 LSF coefficients [1].

While LSF VQ’s perform well enough to be used in
real-time coders, numerous aspects of their design and
evaluation could benefit from additional research. One of
these is how to make better use of human perceptual
characteristics which cause decreased sensitivity to spec-
tral error as the error frequency increases. Some VQ work
has used this property in a quantizer performance mea-
sure [1][2]. However, we are unaware of any research to
determine the amount of spectral error needed for audi-
bility as a function of frequency.

This paper describes experiments which investigate
relationships among spectral error, perception, and
weighted Euclidean distance measures. We determine
experimentally a spectral error distribution that is
approximately “balanced”, i.e., error at all frequencies

contributing equally, on average, to the perceived distor-
tion. Balanced spectral error is desirable since it should
produce the least audible distortion for a given number of
bits. We then design and evaluate a series of MSVQ’s to
verify that these quantizers can be designed to have the
desired error characteristics and to determine how many
bits are needed for spectral quantization to be inaudible.

1.1 LSF VQ Background
The speech derived from a quantized spectrum should

sound as similar as possible to speech derived from an
unquantized spectrum, with the goal being no audible dif-
ference. A common measure of spectral distortion for a
single spectrum is the RMS error, D, in dB [3]:

, (1)

where  is the radian frequency, and  and  are
the linear prediction power spectra:

, , (2)

where  and  are the linear prediction coefficients cor-
responding to the unquantized and quantized LSF’s,
respectively. This measure does not fully account for per-
ceptual characteristics, since it gives equal weight to
error regardless of where it occurs in frequency.

To utilize the frequency-dependent perceptual prop-
erty, some research has examined a weighted distortion
measure in which the spectral error is given a frequency-
dependent weighting [1][2]. This distortion is the Bark-
weighted RMS error, DB, in dB:

, (3)

where W0 normalizes  to unity RMS.  is
a weighting function based on the derivative of the Bark
scale:

, (4)

where Fs is the sampling frequency in Hz.  is
shown in Figure 3. DB has greater correlation with sub-
jective evaluation than does the unweighted measure of
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Eq. (1), presumably because DB down-weights higher fre-
quencies [1][2]. A weighted distortion measure such as
Eq. (3) should be used in the VQ evaluation and design
processes. A quantizer for which a weighted distortion
such as Eq. (3) is minimized will have a spectral error dis-
tribution roughly proportional to the inverse of that
weighting; a balanced distribution is desired.

Unfortunately, the evaluation of distortion given by
Eqs. (1) or (3) is too computationally complex for VQ use
in a real-time speech coder. Instead, a weighted Euclid-
ean distance (WED) is used to approximate the distortion
between a given LSF vector and each of the quantizer’s
code book vectors. A WED, , has the form:

, (5)
where  and  are column vectors of the original and
quantized LSF vectors and W is a diagonal weighting
matrix which may depend on . Ideally, the WED should
be proportional to perceived distortion.

While use of a WED (rather than spectral distortion)
for VQ design and search generally means that spectral
distortion is not minimized, recent research has found
weights for which the distortion, , given by Eq. (1), is
equal to the WED for small distances, i.e.,

, (6)
when cubic and higher terms can be neglected [4]. These
weights depend on , but their calculation is simple
enough for real-time use. We call these the Gardner
weights, after the principal investigator. Use of the Gard-
ner weights and choosing  to minimize Eq. (5) therefore
minimizes the spectral distortion given by Eq. (1), if the
quantizer’s average distortion is sufficiently small. Quan-
tizers for speech coders usually meet this requirement. A
relationship such as Eq. (6) has not been found for
weighted distortion measures such as Eq. (3).

Paliwal and Atal reported good VQ performance using
a WED with weights determined experimentally [3]:

, , (7)

where  is the unquantized linear prediction power
spectrum at the frequency of the ith LSF component. The
ci help account for the decreased sensitivity to spectral
error at higher frequencies and are fixed:

. (8)

2. PERCEPTUAL EXPERIMENTS
Several experiments were conducted to determine the

spectral error distribution produced by the above dis-
tance metrics and to estimate the spectral error distribu-
tion perceived to be balanced.

2.1 The Experimental Procedure
The following procedure was used to incorporate LSF

quantization into a speech coding context. An input
speech signal was high pass filtered with a 4th order Che-
bychev Type II filter, having a 60 Hz cutoff frequency, and
30 dB stopband attenuation. The resulting signal was
analyzed every 20 msec using 10th order linear predic-
tion, and the prediction residual was calculated. The
LSF’s were perturbed by adding a simulated error vector;
if the perturbed LSF vector was invalid, the error vector
was scaled by 0.9 until the LSF vector was valid. The
LSF’s were then adjusted for a minimum spacing of 50
Hz, if necessary. An output signal was reconstructed
using the prediction residual and a synthesis filter corre-
sponding to the perturbed LSF’s. The linear prediction
used the autocorrelation method with a 25 msec Ham-
ming window, and a 0.994 bandwidth expansion factor;
an LSF component spacing of 50 Hz was enforced. For a
given distance , quantizer error was simulated by an
error vector, , having a uniform distribution
inside a hyper-ellipsoid volume defined by . The
test speech signal came from eight males and eight
females speaking two sentences each, yielding 32 sen-
tences for evaluation. The output speech was evaluated
subjectively to determine the effects of the LSF errors.

The RMS distortion was calculated by evaluating the
original and distorted spectra given by Eq. (2) for 1024
discrete frequencies, converting the distortion to dB at
each frequency, and then taking the RMS value of the dis-
tortion at each frequency over all measured spectra.
Spectra corresponding to silence were excluded.

2.2 Distribution Produced by the Gardner Weights
The experimental procedure described above was fol-

lowed using the Gardner weights. An initial run was done
with a small distortion level, about 0.5 dB, and the output
speech was evaluated for audible distortion. The distor-
tion level was increased and the process was repeated
until the distortion was audible on about half of the 32
test sentences. The RMS spectral distortion at this just
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Figure 1. Just Audible Spectral Error Distributions
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audible level is plotted in Figure 1. This curve is nearly
flat, except for the rise below 500 Hz. A flat curve is
expected, since the Gardner weights minimize a uni-
formly weighted distortion, Eq. (1). The distortion pro-
duced by the Gardner weights was audible only in the low
frequencies, hence this is not a balanced distribution.
2.3 Distribution Produced by the Paliwal Weights

This experiment was identical to the prior one except
for the use of the Paliwal weights. The RMS spectral dis-
tortion at the just audible level is plotted in Figure 1. The
distortion produced by the Paliwal weights was audible
only in the low frequencies.
2.4 Distribution Produced by the Bark Weights

In similar fashion, another experiment was conducted
using weights calculated to minimize the Bark-weighted
spectral distortion given by Eq. (3). There is no analytic
expression for these weights; they were determined
numerically. For a given LSF vector, the weight for each
component was determined by adding a 4 Hz error, e, to
that component, measuring the resulting distortion, DB,
by evaluating Eq. (3) using a 2048 point FFT, and by pre-
suming . This was repeated for error in the
opposite direction, and the two weights were averaged.
The RMS spectral distortion at the just audible level is
plotted in Figure 1. As expected, this curve resembles the
inverse of the Bark weighting curve given by Eq. (3). Dis-
tortion was audible in the middle and upper frequencies,
but not in the lower frequencies.

2.5 Perturbation of Individual LSF’s
Since none of the above weighting methods produced

a balanced spectral error distribution, another experi-
ment was conducted to help determine this distribution.
This experiment was similar to the others, except that
error was added to the LSF vector one component at a
time. The error magnitude for the ith LSF component was
determined by Eq. (6) to be , where  is
the desired distortion, and  is the Gardner weight. The

error sign was chosen randomly. Error was added to the
first LSF component to produce a desired distortion level,
initially set to be just audible to a single listener. It was
then increased or decreased by 0.05 dB until the spectral
error was audible to a small panel of listeners for about
half of the 32 test sentences. This process was repeated
for all LSF components. The RMS distortion at these just
audible levels is shown in Figure 2. The corresponding
distortion settings, D, in dB, for LSF components 1 to 10
were 0.35, 0.35, 0.4, 0.6, 0.75, 0.95, 1.2, 1.2, 1.2, and 1.4,
respectively.

Figure 2 also shows the envelope of these curves. This
envelope is roughly the just audible distortion as a func-
tion of frequency. The envelope also represents an
approximately balanced spectral error distribution, if
interaction among distortion components can be ignored.
The inverse of this envelope, which we denote , is a
reasonable alternative to the Bark weighting given by
Eq. (4). These functions, normalized to an average value
of 1, are shown in Figure 3.

3. PERCEPTUALLY RELATED WED’S
We now need to determine a weighted Euclidean dis-

tance which is related to a given weighted distortion func-
tion. The analytical approach is to follow that in [4], but
to start from a weighted distortion, rather than the
unweighted distortion in Eq. (1). An alternative is to
determine the weights by direct measurement of the sen-
sitivity as described in Sec. 2.4, but this method involves
too much computation for real-time use. We pursued a
third option in which the weight for the ith LSF compo-
nent is the product of the Gardner weight, , and a cor-
rection factor determined by the weighting function,

, selected for use in the distortion measure, e.g., in
Eq. (3), . These weights are given by:

(9)

where  is the value of the ith LSF component. For the
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 and  functions, we observed good correla-
tion between measured weighted distortion and WED’s
using weights determined by Eq. (9) in experiments using
simulated quantization error.

4. QUANTIZER PERFORMANCE EVALUATION
Next, we conducted experiments which compared the

performance of actual MSVQ’s trained and searched
using WED’s whose weights were specified by: 1) Paliwal,
Eq. (7); 2) Eq. (9), using ; and Eq. (9), using .
The procedure described in Sec. 2.1 was followed, using
the actual quantizer rather than simulated error.

4.1 MSVQ Training
The training vectors were generated using the linear

prediction technique described in Sec. 2.1, with speech
selected for diverse spectral content. An example of how
this diversification was achieved is through the use of
equal gender content, multiple languages and acoustic
background environments, etc. In order to ensure a ran-
dom distribution of the training data, the inclusion of
adjacent analysis vectors was prohibited, and once a vec-
tor was selected, there was only a 40 percent probability
of selecting each successive vector. In addition to these
constraints on data selection, vectors with a low energy
were also discarded. There were approximately 4 million
vectors in the training database prior to these con-
straints, yielding approximately 1 million vectors for
training. An agglomeration-based algorithm was used for
the selection of seed points followed by a generalized
Lloyd iteration for the generation of an initial code book.
The unweighted Euclidean distance was used. Given
these initial code books, additional code books were then
trained using the joint optimization procedure with a
search depth of M=8 as described in [5].

4.2 Evaluation Procedure and Results
For each of the three WED’s, the 32 test sentences

were quantized and compared with the input sentences
through a double-blind A-B test. The ordering was ran-
dom, and pairs were presented in both orders. Listeners
were told that one of the pairs was input and the other
was processed; they were instructed to identify the input.

Unfortunately, our MSVQ training program was not
working in time to meet the publication deadline. We sin-
cerely apologize for this and regret any inconvenience to
the audience. Complete results and a revised copy of this
paper will be available at our poster session.

To obtain preliminary results, the 32 test sentences
were quantized using the initial 28 bit codebook,
searched to minimize the three WED’s described above.
The resulting spectral error distributions are shown in
Figure 4. Each curve has the expected shape. The quan-
tized sentences were evaluated by five listeners using the
A-B test described above. The input sentence was misi-
dentified 10.6%, 10.6%, and 15.0% of the time for the
Paliwal, Bark, and experimental WED’s, respectively. A
higher score means that the quantization is less audible,

so the experimental WED performed the best in this test.
We expect that the experimental WED will also perform
better than the Paliwal WED for quantizer training.

5. CONCLUSIONS
We have shown that several weighting schemes do not

produce a balanced error distribution. We have experi-
mentally determined a spectral error distribution which
is approximately balanced. We will show that a VQ can
have a balanced error distribution. We will determine
whether or not the experimental WED outperforms the
Paliwal WED and how many bits are needed for inaudible
quantization.
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