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ABSTRACT

This paper describes investigations into the use of linear

dynamic segmental hidden Markov models (SHMMs) for

modelling speech feature-vector trajectories and their associated

variability.  These models use linear trajectories to describe

how features change over time, and distinguish between extra-

segmental variability of different trajectories and intra-

segmental variability of individual observations around any one

trajectory. Analyses of mel cepstrum features have indicated

that a linear trajectory is a reasonable approximation when

using models with three states per phone. Good recognition

performance has been demonstrated with linear SHMMs.  This

performance is, however, dependent on the model initialisation

and training strategy, and on representing the distributions

accurately according to the model assumptions.

1. INTRODUCTION

Two fundamental concepts in segmental HMMs [1,2,3] are

modelling variability between different instantiations of a sub-

phonemic speech segment separately from that within one

example, and the notion of an underlying parametric trajectory

describing how acoustic feature vectors change over time during

a segment.  The simplest case is a static SHMM [1] (or �target

state segment model� [4]), where the trajectory is assumed to

be constant over time and so is represented by a single �target�

vector.  A linear dynamic SHMM [2,3] is obtained by assuming

that the underlying trajectory changes linearly, such that the

trajectory is described by mid-point and slope vectors.  A

segment probability has two components: the extra-segmental

probability of a trajectory given the model state, and the intra-

segmental probability of the observations given the trajectory.

In the case of the linear model, we suppose that the distribution

of trajectory parameters for a given state can be described by

Gaussian distributions N( , )µ γ and N( , )ν η (with diagonal

covariance matrices) for the slope m and mid-point c

respectively.  The intra-segmental distribution is assumed to be

Gaussian with diagonal covariance t. Ignoring any duration

probability, the joint probability of a  segment of observations

y y yT= 0 , ...,  and a trajectory f(m,c)   is specified as
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We define the probability of a segment given a linear  Gaussian

segmental HMM (GSHMM) state as being the above  quantity

for the optimal trajectory, which is defined by a maximum a

posteriori estimate of the slope ( $ )m and mid-point ( $)c . These

values can be shown to be a weighted sum of the values which

are optimal with respect to the data and the expected values as

defined by the model, thus:

$

( )

( )

m

t
T

y

t
T

t
t

T

t

T
=

−∑






+

−∑






 +

=

=

2

2

0

0

2

γ µτ

γ τ
 and $

( )
c

y

T

t
t

T

=
∑







+

+ +
=0

1

η ντ

η τ
  (1).

A consequence of the two-stage model of variability is that

different explanations of any one utterance use different

numbers of intra- and extra-segmental probabilities.  Hence, the

models only perform appropriately for recognition if the two

types of probability balance correctly.  Experiments with the

static model [3] demonstrated that a suitable balance can be

achieved over a fairly wide range of segment durations,

provided that the extra- and the intra-segmental distributions

both fit the model assumptions.  In particular, performance was

greatly improved by using a two-component Gaussian mixture

for the intra-segmental distribution.  With appropriate model

initialisation, these models outperformed conventional HMMs

[5]. The current paper focuses on the linear GSHMM,  with the

aim of combining an appropriate trajectory description with

accurate distribution modelling.  The experiments use the same

connected-digit recognition task with three-state phone models

as in previous studies [2,5,6].  Speech data is analysed to

investigate the validity of a linear trajectory assumption, and

recognition experiments are described which demonstrate the

importance of accurate distribution modelling and of adopting a

suitable model initialisation and training strategy.

2. TRAJECTORY MODEL REPRESENTATIONS

2.1. Method

The aim of these studies was to analyse trajectories of acoustic

features as described by a set of simple static and linear

GSHMMs, independently from particular segmental models.

The data was labelled at the segment level by using trained

three-state-per-phone standard HMMs to perform a Viterbi

alignment with the known transcription.  A trajectory vector

was estimated for each identified segment as the average of the

observed feature vectors for the static model and as the best-

fitting straight line parameters for the linear model.

2.2. Trajectory description

Figure 1 illustrates that, whereas the static model provides only

a crude approximation to the observed features, the linear

model generally follows the pattern of change very well.  There
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Figure 1 - Frame-by-frame values (solid lines) superimposed on calculated model values (dotted lines) for mel cepstrum features

representing the digit �zero�, as  described by static (left plot) and linear modelling assumptions (right plot).

is some loss of detail in the linear approximation for higher-

order cepstral features (from around the sixth upwards), which

tend to change less smoothly than low-order features.   A linear

model should, however, be adequate to capture general time-

evolving characteristics, with further variation around the linear

trajectory modelled as random by the intra-segmental variance.

3. RECOGNITION EXPERIMENTS

3.1. Method

For the segmental HMMs, a strict left-right topology was used

with no self-loops and the maximum segment duration was set

to 10 frames.  This model structure imposes a maximum phone

duration of 300 ms, which was considered adequate for most

speech sounds in connected speech.  Self-loops were used for

the non-speech models, to provide a simple way of allowing

long periods of silence.  All segment durations were assigned

equal probability and duration distributions were not re-

estimated. The other parameters were trained with five

iterations of Baum-Welch re-estimation.

3.2. Model initialisation

It has been found [5] that a successful initialisation strategy is

to (automatically) estimate the model parameters directly from

the complete set of training data as segmented by trained

standard HMMs.  In the current experiments, different

strategies of this type were investigated for the linear models.

For each feature of every example of a segment, the best-fitting

trajectory parameters were determined.  The means and

variances of the mid-points were initialised from the

distributions of the individual mid-points.  Different

alternatives for using the slope parameters were investigated.

One possibility is for the model to allow the slope of a feature

to vary sufficiently to accommodate all observed trajectories for

the segment, so the intra-segmental variance should be very

small.  An alternative would be for the slope to be more

constrained and for the intra-segmental variance to be larger to

allow for the greater variability of the observations around the

optimal trajectory.  The first approach should be able to

represent all observed trajectories quite closely, while the

second approach provides more model-dependent constraints,

which may be better for short segments when it is difficult to

compute a representative slope from the data alone.   To

investigate the properties of these alternative approaches,

different initialisation strategies were compared, thus:

1. fully-flexible slope: the means and variances of the individual

slopes were determined and the intra-segmental variance

around the individual trajectories was estimated.

2. constrained slope variance: the slope means were set in the

same way but their variances were set to a small fixed value.

The intra-segmental variance was initialised by determining

the variability of the observations around a line with

segment-dependent mid-point but fixed mean slope.

3. zero mean slope with constrained  variance: the slope means

were all initialised to zero, and their variances were set to a

small fixed value.  The intra-segmental variances were

initialised from the variability of the observations around a

line with segment-dependent mid-point and a slope of zero.

4. fixed zero mean slope with constrained variance:  models

were initialised as for 3 above, but the slope means were

fixed at zero during training.  These models use the linear

GSHMM structure but are in effect almost static (as the slope

variance is small), and therefore allow for a direct

comparison to evaluate the influence of modelling dynamics.

3.3. Recognition results

The recognition results for the different linear GSHMMS are

summarised in Table 1.  The recognition performance is very

poor for the models (1) initialised with a fully-flexible slope

parameter.  The high proportion of word deletion and



substitution errors reflects a problem with misrecognising

sequences of short segments as smaller numbers of longer

segments, frequently silence.  When the slope variance was

initialised to a small value (2,3), the word error rate was much

lower.  The slope variance remained small after training, and it

thus appears that the models provide better discrimination if

they do not attempt to describe variability in the dynamics.

Some representation of dynamics is important however, as

models initialised with zero-mean slope performed much better

when allowed to deviate from the zero-mean condition during

training (3) than if the slope mean was fixed (4).  Recognition

performance is generally quite disappointing for all model sets.

The model of intra-segmental variability was therefore studied,

as this was found to be an issue with static models [4,5].

Model set % Corr % Subs % Del % Ins % Err

Standard HMM 93.2 5.6 1.2 1.0 7.8

LGSHMM 1 67.5 17.3 15.2 0.1 32.6

LGSHMM 2 91.7 4.2 4.1 0.1 8.4

LGSHMM 3 92.1 3.9 4.0 0.0 7.9

LGSHMM 4 74.2 16.1 9.7 0.1 25.9

Table 1: Connected-digit recognition results for standard

HMMs and different sets of Linear GSHMMs.

4. MODELLING INTRA-SEGMENTAL VARIABILITY

4.1. Distributions describing segmental variability

4.1.1. Method

Based on the entire training corpus, intra-segmental

distributions of the speech feature vectors were estimated for

each model state, using the same procedure as in previous

experiments [4,5]: a segmental Viterbi alignment procedure

was performed to associate each speech frame with a single

model state. For each segment identified, the optimal feature

vector trajectory was computed and hence the distribution of

differences between the trajectories and the observed feature

values was derived.  These distributions were compared with

the distributions specified by the segmental models.

4.1.2. Results

As can be seen from Figure 2a showing typical example

distributions, the intra-segmental variance varies according to

the model set.  Not surprisingly, this variance is smallest when

the trajectory slope can vary to accommodate different

examples.  In addition, the importance of modelling dynamics is

further supported by the observation that the intra-segmental

variance is largest when the model mean slope is fixed at zero.

In all cases, a single-Gaussian model is not a very good

representation for the intra-segmental distributions around

optimal trajectories: the probability of very close matches to the

mean is underestimated, while that of somewhat greater

deviations is overestimated.  There are two important

influences determining the shapes of these distributions: the

validity of the trajectory model, and the general problem of

estimating a population mean and variance from a small sample

of data.  Thus, there will be a tendency to underestimate the

variance, especially for very short segments, and this problem is

greatest for the linear model with flexible slope.  However, the

trajectory assumptions are evidently more valid for the linear

model, and so the true variance will be smaller.  In general,  the

models with a constrained non-zero slope seem to provide the

best compromise.

As with the static GSHMMs (although to a lesser extent), the

distribution shapes should be improved by using a mixture of

two Gaussians, each with the same mean but one with much

smaller variance than the other.  A theory of multiple-

component intra-segmental mixture linear GSHMMs is

therefore developed in the following section.

4.2. Theory of intra-segmental mixture linear GSHMMs

An intra-segmental mixture linear GSHMM is described by

single-Gaussian distributions for the parameters defining the

trajectory, and a mixture of I Gaussians to represent intra-

segmental variance.  Each component i has diagonal covariance

τ i  and weight wi . The probability of a segment of

observations y y yT= 0 , ... ,  for a given model state is defined as
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As with the static model [4], the definition of the optimal

trajectory is thus an iterative one, as it depends on existing

values of trajectory parameters.  In practice, provided the initial

estimates are reasonable, the estimates converge within a very

small number of iterations.  For the case of a two-component

mixture intra-segmental model, it is useful to consider the range

of values which pt  can take, and the effect on the calculated

optimal trajectory.  If t2   is small relative to t1, then pt  will lie

between 1/t1  and 1/t2, and t2 will only have any substantial

influence for observations close to the trajectory.  The result is

that pt  will be highest for those observations nearest the

trajectory and hence these observations will have the most

influence on the optimal trajectory calculation.  This effect of

reducing the influence of occasional outliers seems an

intuitively sensible one. In the special case where the intra-

segmental variance is represented by a single Gaussian, pt

reduces to 1/ τ  and hence the expressions for the optimal slope

and mid-point simplify to those in (1).

4.3. Intra-segmental mixture experiments

4.3.1. Training procedure

The models were trained using the same approach adopted for

the most recent experiments with static models [6].  The models

were initialised from a standard-HMM segmentation in the

same way as for single-Gaussian models, and the second

mixture component then added with a small variance and low

weight before training the models.  Four different sets of

models were trained (each with five iterations of Baum-Welch

re-estimation), as for the single Gaussian models.
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Figure 2 - Observed intra-segmental distributions plotted with calculated model distributions for the second cepstral coefficient

representing the final state of /eI/ for (a) single-Gaussian models (top) and (b) two-component Gaussian mixture models (bottom).

4.3.2. Recognition results and discussion

With improved distribution modelling (Figure 2b), recognition

performance has improved for all sets of models (Table 2).

However, model initialisation strategy is still important.  The

models initialised with a constrained slope still outperform the

fully-flexible models.  It therefore appears that, even with quite

accurate distribution modelling, attempting to model variability

in the dynamics is detrimental to speaker-independent

recognition performance.  It is obviously important to model the

general nature of temporal changes.  However, variation in the

detail of the dynamics, particularly across speakers, may not be

consistent or important for distinguishing sounds.  Another

important factor is likely to be the difficulties in reliably

estimating dynamics for short segments, which is probably why

it is better to initialise the model slope means to zero (3) than

to use the average slope over all segments (2), some of which

will be unreliable.

The best set of linear models gives an error rate of only 3.3%,

compared with 7.8% for conventional HMMs.  However, if the

conventional HMMs include derivative features computed using

linear regression over five frames, the error rate reduces to

3.1%.  Although the use of derivative features only provides

implicit modelling of dynamics, some representation of change

is provided for every frame.  However, the segmental model

only represents dynamics for the duration of a segment, and the

representation is therefore only reliable for segments which are

at least a few frames long.  For this reason, further performance

advantages may be obtained by using derivative features with

the segmental models, as has been found by other researchers,

for example  Digalakis [7].  It would however be preferable to

actually model dynamics across segments.

Model set % Corr % Subs % Del % Ins % Err

LGSHMM 1 86.2 9.2 4.7 0.1 13.9

LGSHMM 2 93.6 3.4 3.0 0.1 6.5

LGSHMM 3 96.8 2.0 1.2 0.1 3.3

LGSHMM 4 91.5 6.1 2.4 0.1 8.6

Table 2: Recognition results for 2-component intra-segmental

mixture Linear GSHMMs.

5. CONCLUSIONS

It has been demonstrated that linear GSHMMs can outperform

conventional HMMs.  As for static GSHMMs, recognition

performance depends on describing the distributions accurately

according to the model assumptions and on having an

appropriate model initialisation strategy.  It is also important

that the parameters are used in the best way for reliable

discrimination between segments.  Current experimental results

suggest that it may not be useful to attempt to represent

variability in dynamics, at least for speaker-independent

models.  Further work on modelling dynamics is comparing

speaker-independent with speaker-dependent modelling.

Additional experiments are being carried out to investigate

GSHMMs using a formant representation, which may be more

suited to a linear trajectory model than the higher-order cepstra.

To obtain full benefit from a segmental approach, it is probably

necessary to incorporate a model for dynamics across segments,

as currently there are only advantages for fairly long segments.

This is likely to be the main reason why linear GSHMMs have

not so far outperformed HMMs with time derivative features.
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