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ABSTRACT

In this paper, we propose parameter estimation techniques
for mixture density polynomial segment models (henceforth
MDPSM) where their trajectories are speci�ed with an arbi-
trary regression order. MDPSM parameters can be trained
in one of three di�erent ways : (1) segment clustering, (2)
expectation maximization (EM) training of mean trajec-
tories, or (3) EM training of mean and variance trajecto-
ries. These parameter estimation methods were evaluated
in TIMIT vowel classi�cation experiments. The experimen-
tal results showed that modeling both the mean and vari-
ance trajectories are consistently superior to modeling only
the mean trajectory. We also found that modeling both tra-
jectories results in signi�cant improvements over the con-
ventional HMM.

1. INTRODUCTION

To date, one of the most successful approaches for large vo-
cabulary continuous speech recognition has been based on
the hidden Markov model (HMM). Although HMMs will
continue to play an important role in most recognition sys-
tems for a long time to come, many alternative models have
been proposed in recent years to address some of the short-
comings of HMMs. Broadly speaking, there are two HMM
limitations that various models have tried to address: (1)
weak duration modeling and (2) assumption of the con-
ditional independence of observations given the state se-
quence. The �rst problem, where an HMM state duration
model is implicitly given by a geometric distribution, has
been addressed by introducing semi-Markov models with
explicit state duration distributions. The second problem
has been widely acknowledged to be more serious, and a
number of alternative solutions that address this problem
have been studied[1][2][3][4][5][6][7][8]. Delta parameters of-
fer the simplest way of representing the time dependency of
observations, and have been shown to tremendously boost
performance. Other alternatives are more elegant in rep-
resenting the time dependency. The polynomial segment
modeling proposed by Gish and Ng [4] is one such technique
for relaxing the independence assumption. This modeling
technique, however, has a serious shortcoming; i.e., it as-
sumes the variance to be time invariant within a segment.
This will be disadvantageous with respect to the conven-
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tional HMMs which can represent variance changes in a
segment by dividing the segment into a number of states
with di�erent variances.
This paper presents model parameter estimation method

for mixture density polynomial segment models (MDPSM)
with time variant variances[9]. The model parameters of
the MDPSM are the mean trajectory coe�cients, the vari-
ance coe�cients and the mixture weights. In our segmental
modeling approach, higher order regression models are used
not only for mean trajectory modeling but also for time-
varying variance modeling. [4] can be viewed as a special
case (i.e. 0-th order regression model) of our method. Re-
cently, similar approach was also proposed by Gish and Ng
[10]. However, they restricted the time-variation of the co-
variance to be limited to having three di�erent covariance
matrices existing over a segment, while there is no restric-
tion in our modeling except time-varying variance can be
modeled with higher order regression models.
The paper is organized as follows. Section 2 starts with

an overview of single Gaussian segment modeling, describes
two ways of model parameter estimation for MDPSM with
time-invariant covariance, and �nally provides model pa-
rameter estimation formulae for the time-variant covari-
ance case. To con�rm the performance of the three kinds
of MDPSM, preliminary classi�cation experiments are per-
formed. These are described in Section 3. Section 4 con-
cludes the paper.

2. DERIVATION OF MODEL PARAMETER
ESTIMATION FORMULAS

2.1. Single Gaussian Segment Model

Consider an L (in frames) length sequence of observation
vectors yL1 = [y1; : : : ; yL] generated by label a, where yt is a
D-dimensional observation (e.g. cepstrum) vector at time
t. This sequence de�nes a segment corresponding to the
label a. In the polynomial trajectory model, this segment
is represented as follows:

yt = �at + et; 1 � t � L; (1)

where �at and et are the D-dimensional mean vector and
residual error vector, respectively, at time t. The mean
vector �at is represented as an R-th order polynomial �at =
ztLBa, where Ba = [ba0; ba1; : : : ; baR]

T , and ztL is an (R+1)-
dimensional vector:
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Note that the polynomial is de�ned on normalized time.
When the error vectors et are considered independent

and identically distributed as a Gaussian with zero mean
and an invariant covariance matrix �a, the likelihood of
the segment can be expressed as,

P(y1; : : : ; yLja) =
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The model parameters, contained in Ba and �a can be es-
timated using a maximum likelihood criterion as described
in [4]. From now on, we omit a for simpli�cation.

2.2. Mixture Density Polynomial Segment Model

The discussion in the previous section was concerned with
single Gaussian segment modeling. We extend here the pre-
vious modeling to a mixture density case. In this case,
Eq. (3) is represented by an M -mixture Gaussian:

f(yt) =

MX
k=1

wk fk(yt) =
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wk N (yt; Bk;�k) (4)
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and wk is the weight of the k-th mixture component. The

mixture components satisfy the relation
P

M

k=1
wk = 1. The

model parameters Bk;�k, and wk in Eq. (4) can be esti-
mated by segment clustering or by EM training. These
methods are described in detail in 2.2.1. and 2.2.2., re-
spectively.

2.2.1. Clustering Method

One simple way of generating MDPSM is based on seg-
ment clustering. That is, the training segments for a la-
bel (e.g. phone) are partitioned into M regions using the
K-means clustering algorithm. The distance measure used
during the clustering is a \multivariate Gaussian distance
measure". Bk and �k can be obtained in the same way as
in the single mixture case using the segments assigned to
cluster k. wk is calculated as the relative frequency of the
segments.

2.2.2. EM Method

To obtain model parameters that maximize P(yL1 ja), we
derive here re-estimation formulas based on the EM algo-
rithm. The EM re-estimation formulas can be derived by
maximizing the following auxiliary functionQ with the mix-
ture components being the hidden variables:

Q(��j�) = E[log P(yL1 ; kj��)jy
L

1 ;�]

=

MX
k=1

P(k; yL1 j�)

P(yL1 j�)
log P(yL1 ; kj��) (6)

where � and �� are the sets of the current model param-
eters and the re-estimated model parameters, respectively.
k denotes the index of a mixture component. Maximizing
Eq. (6) is equivalent to individually maximizing the fol-
lowing two functions:

Q1(��j�) =

MX
k=1

P(k; yL1 j�)

P(yL1 j�)
log P(yL1 j��) (7)

with respect to Bk and �k, and

Q2(��j�) =
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k=1

P(k; yL1 j�)

P(yL1 j�)
log P(kj��) (8)

with respect to wk.
Let the probability P(k; yL1 j�)=P(y

L

1 j�) in Eq. (7) and
Eq. (8) be denoted as 
k;t using the current model param-
eters �. Then, we can estimate 
k;t e�ciently as,
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where �t and �t are obtained recursively:
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First, we consider obtaining the mean trajectory param-
eters of the m-th component, �Bm = [�bm0;�bm1; : : : ;�bmR]

T .
These parameters can be obtained through di�erentiation
of Eq. (7) with respect to �bmr and solving the equation
@Q1=@�bmr = 0.
The variance of the m-th component, ��m, can also be

obtained through di�erentiation of Eq. (7) with respect to
the i-th column and j-th row element ��mij and solving the
equation @Q1=@��mij = 0. It can be shown that di�erentia-
tion with respect to �bmu results in

RX
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C(u+ r)�bmu = V (r) (12)

where
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As for the variance, ��m is
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The weighting coe�cient �wm can be obtained from
Eq. (8) by application of a Lagrange optimization using
Lagrange multipliers:

�wm =

LX
t=1


m;t=

LX
t=1

MX
k=1


k;t: (17)

The results of the model parameters obtained from clus-
tering method are used as initial model parameters for the
EM algorithm.

2.2.3. Variance Trajectory Model

In the previous modeling, the variance is time invariant
throughout a segment. Here, we try to extend the segment
model with time variant variances for more precise model-
ing. This model can be realized by representing a change
in the variance as a trajectory.
In the variance trajectory model, variance �k in Eq. (5)

is represented as a W -th order polynomial �k;t = ztLGk,
where

Gk = [gk0; gk1; : : : ; gkW ]T : (18)

ztL de�ned by Eq. (2) is given as a (W + 1)-dimensional
vector. In this model, estimates of the mean trajectory and
weight parameters can be obtained in a similar way to that
described in 2.2.2.. However, the computation of variance
di�ers as follows.
The variance of the m-th component ��m;t can be

obtained through di�erentiation of Eq. (7) with re-
spect to the i-th column and j-th row element ��m;t;ij =
[�sm;ij0; �sm;ij1; : : : ; �sm;ijW ]T and solving the equation
@Q1=@�sm;ijr = 0. From this equation, we obtain

LX
t=1

gmr;t f��m;t;ij � (yt � ��m;t)i(yt � ��m;t)jg =��
2
m;t;ij = 0:

(19)
However, as ��m;t;ij in the denominator is a time depen-
dent value, Eq. (19) can not be solved as a linear equa-
tion. Therefore, we use an approximation assuming ��m;t;ij

in the denominator is replaced by a value calculated from
the current variance trajectory �m;t;ij. Equation (19) then
becomes

LX
t=1

gmr;t f��m;t;ij � (yt � ��m;t)i(yt � ��m;t)jg =�
2
m;t;ij = 0:

(20)
We can now solve this linear equation and obtain the fol-
lowing formula:

WX
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Note that both H(l) and Z(r) are dimension dependent
vector.

3. EXPERIMENTS

3.1. Conditions

To investigate the relative e�ectiveness of the three kinds
of MDPSM, we performed experiments on a speaker-
independent 16-vowel classi�cation task using the TIMIT
corpus. 462 speakers (41,014 tokens) were employed for
context-independent MDPSM training and 168 speakers
(14,981 tokens) were employed for testing. The regression
order of the mean trajectories and the time varying vari-
ance trajectories were set to 2. We generated MDPSM with
diagonal covariance matrices from 10-dimensional MFCCs
and their derivatives with a 5 ms frame rate. As for the
initial variances for variance trajectory model, the results
obtained from the clustering method were used. That is,
gk1 and gk2 in Eq.(18) were set to zero for the initial val-
ues. The duration probabilities, which were computed from
a histogram of the training segment durations, were used in
the classi�cation. Segement yL1 can be classi�ed as phoneme
m̂ by

m̂ = argmax
m

�
log P(yL1 jm) + L log P(Ljm)

	
: (25)

In order to match the dynamic ranges of log P(yL1 jm) and
log P(Ljm), L log P(Ljm) was used instead of log P(Ljm)
in Eq.(25) . We found this operation gaving consistently
higher classi�cation performance than that of Eq.(25) .

3.2. E�ectiveness of Variance Trajectory Modeling

Figure 1 shows the di�erences between the conventional
constant variance PSM (Figure 1(a)) and the variance tra-
jectory model (Figure 1(b)). These trajectories were ob-
tained from the model parameters estimated for the /ay/
vowel segments with single mixture. Solid lines show the
trajectories �t of the �rst and the second MFCC values.
Dotted lines show the trajectories ��t calculated as:

��t = �t � �t: (26)

where �t represents the standard derivation. Note that �t
is constant throughout the segment for Figure 1(a) and �t
is time variant for Figure 1(b). In general, variances of
central parts of vowel segments are smaller than those of
the beginning or the ending parts of them. We can see
from these �gure that variance trajectory model can capture
these phenomena.

Figure 2 shows log likelihood as function of iterations on
the /aa/ vowel segments (3,054 segments in total). Solid
line shows the log likelihood for three component MDPSMs
with constant variance described in 2.2.2.. Dotted line
is for three component MDPSMs with variance trajectory
model (VTM). We can see from this �gure that VTM gives
higher log likelihood than the constant variance model at
more than �ve iterations.
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Figure 1. Comparison between constant variance
model and variance trajectory model.
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3.3. Classi�cation Results

The classi�cation results are shown in Table 1. For com-
parison, results obtained using a three-state HMM are also
listed in the table. From this table, it can be seen that (1)
variance trajectory models (VTM) give consistently higher
classi�cation rates compared to constant variance models
(EM) and (2) VTMs provide about 4% improvement for
each mixture against the three-state HMM whose number
of free parameters is equal to that of the VTMs'.

Table 1. Classi�cation rate (%).
method mixtures

1 3 5 7 9

Clustering 56.8 59.5 61.6 62.2 62.4
EM 56.8 62.3 63.8 65.4 65.9
VTM 58.7 63.4 65.0 66.0 66.2
HMM 54.1 58.7 60.9 62.0 62.4

4. CONCLUSIONS

We proposed parameter estimation techniques for mixture
density polynomial segment models (MDPSM) with time
variant variances. In this method, higher order regression
models are used not only for mean trajectory modeling but
also for time-varying variance modeling. The classi�cation
results showed that the proposed method gave consistently
better performance than theMDPSM proposed by Gish and
Ng[4]. In addition, the proposed method achieved signi�-
cant improvement over the conventional HMM.
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