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ABSTRACT

In segment based recognizers, variable length speech seg-
ments are mapped to the basic speech units (phones, di-
phones,...). In this paper, we address the acoustical mod-
eling of these basic units in the framework of segmental
posterior distribution models (SPDM). The joint posterior
probability of a unit sequence u and a segmentation s,
Pr(u; sjx) can be written as the product of the segmen-
tation probability Pr(sjx) and the unit classi�cation prob-
ability Pr(ujs;x), where x is the sequence of acoustic ob-
servation parameter vectors. In particular, we point out the
role of the segmentation probability and demonstrate that it
does improve the recognition accuracy. We present evidence
for this in two di�erent tasks (speaker dependent continuous
word recognition in French and speaker independent phone
recognition in American English) in combination with two
di�erent unit classi�cation models.

1. SPD MODELING

An appropriate training algorithm for segmental posterior
distribution models (SPDM) is an iterative algorithm that
alternates between the following two steps:

1. Find the unit sequence û and the corresponding seg-
mentation ŝ satisfying:

ŝ; û = argmax
s;u

Pr(u; sjx; �)

The model parameters are represented by � and the
maximization is over all possible segmentations s and
over all admissible unit sequences u for the given \tran-
scription" of the training data. In the remainder of this
paper, we call ŝ the unit segmentation.

2. Find a new set of model parameters �0 yielding a higher
joint probability estimate for the obtained unit and
segment sequence:

Pr(û; ŝjx; �0) � Pr(û; ŝjx; �)

As the maximization of Pr(û; ŝjx; �) necessarily implies a
suppression of the Pr(u; sjx; �) with (u; s) 6= (û; ŝ) (sinceP

s;u
Pr(u; sjx) = 1), the parameter estimation algorithm

(step 2) has to take all possible segmentations into account.
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Since the number of possible segmentations for an utter-
ance of length F frames is 2F�1, this is computationally
expensive. In order to reduce the number of possible seg-
mentations, two basic strategies are commonly used:

1. Use a preprocessing technique (e.g. frame clustering or
segment boundary detection) [1, 2].

2. Use a non-segmental recognition system (e.g. an
HMM) to provide a set of sentence hypotheses (an N-
best list or a word-lattice) and restrict the segmenta-
tions to those observed in that set [3].

Although these methods reduce the number of possible
non-unit segmentations considerably, they cannot remove
them all without introducing errors. Since the parame-
ter estimation algorithm of segmental posterior distribution
models has to take the remaining non-unit segmentations
into account, its training is computationally more expen-
sive than the Viterbi training of segmental likelihood distri-
bution models [4, 5]. However, in the next section we will
show that introducing the segmentation probability permits
a reduction of the SPDM training time.

2. SEGMENTATION PROBABILITY

2.1. Motivations For Using It

The joint posterior probability Pr(s; ujx) can be written as
the product of a segmentation probability and a unit classi-
�cation probability [6]:

Pr(s; ujx) = Pr(sjx):Pr(ujs;x) (1)

This factorization has several advantages:

� Dedicated statistical models can be trained for estimat-
ing the segmentation and the unit classi�cation proba-
bilities. Only the segmentation model has to be trained
on all possible segmentations. It turns out however
that an adequate segmentation model requires much
less free parameters than an adequate unit classi�ca-
tion model. The large unit classi�cation model must
only be trained on the unit segmentation since the lat-
ter occurs in the conditioning part. This yields a dra-
matical reduction of the training time.

� Since the unit classi�cation models have to be trained
on the unit segmentation only, it is possible to use
the various re-estimation techniques that were origi-
nally developed for the training of segmental likelihood



distribution models [5]. The resulting likelihood es-
timates are then converted to posterior probabilities
using Bayes' law:

Pr(ujs;x) =
p(u; s;x)P
v

p(v; s;x)
=

Pr(u)Pr(sju)p(xju; s)P
v

Pr(v)Pr(sjv)p(xjv; s)

(2)
where the sum extends over all possible unit sequences.

� The computational requirements of the recognition
process can be reduced considerably by calculating the
unit probabilities only for those candidate segmenta-
tions having a segmentation probability exceeding a
prede�ned threshold.

Omitting the segmentation probability in equation 1 would
have severe consequences:

� It would boil down to assuming that all segmentations
are equally probable. However, if information on the
segmentation can be found in x, then di�erent candi-
date segmentations will have di�erent posterior prob-
abilities and the segmentation probability can have an
important e�ect on the recognition result.

� If the unit classi�cation models process segmental fea-
tures, the segmentation probability addresses the con-
ditioning event mismatch problem that is mentioned
in [5]. A segmental feature vector is the result of a
transformation f(x; si�1; si) of the parameter vector
sequence x with the purpose of describing the variable
length segment ]si�1; si] in its context.1. One common
type of segmental feature vector is a �xed length, sam-
pled version of the parameter vector sequence. The
advantages of segmental over frame-based features are
that they represent a broader (and possibly more in-
teresting) range of feature extractions and that they
allow to take full advantage of the correlation that ex-
ists among the parameter vectors in the segment (and
its surroundings). Using segmental features, equation 1
becomes:

Pr(s; ujx) � Pr(sjx)Pr(ujF (s;x)) (3)

where F (s;x) is the segmental feature vector sequence
given s, and '�' indicates a modeling assumption.
Since the segmental feature transformation depends
on the segmentation, and since the recognition pro-
cess has to evaluate di�erent candidate segmentations
s, the overall conditioning event F (s;x) is not unique.
In this case, the foundation of statistical decision the-
ory seems to be lost since the theory holds for com-
paring Pr(ujz) to Pr(u0jz) but not for the comparison
of Pr(ujz) to Pr(u0jz0). However, in our opinion, this
potential problem is relaxed by the presence of the seg-
mentation probability in equation 3. Indeed, suppose
that we would have an ideal segmentation probability

1Note that we use a broader de�nition than [5]: we allow

parameter vectors from outside the segment in the transforma-

tion, which enables us to relax certain conditional independence

assumptions

estimator at our disposal. This detector would gener-
ate a probability 1 for the correct segmentation and 0
for all other candidate segmentations. In this case, the
unit probabilities would only have to be calculated for
the segments of the correct segmentation, such that the
overall conditioning event would be unique. Of course,
in practice the segmentation probability estimator will
not be ideal and the problem will not disappear com-
pletely. Whether this drawback of segmental features
is more important than the intrinsic advantages of us-
ing them in the �rst place (see above) is an empirical
question which is not yet fully answered.

� Even if no segmental or �xed-length feature vectors are
used, modeling the segmentation probability is still mo-
tivated by the fact that the unit classi�cation models
are trained on unit segments only. It is very di�cult
to predict what probabilities will be produced for non-
unit segments that were never seen during the training.
If the unit models extrapolate appropriately, they will
produce low unit probabilities for these \unseen pat-
terns", and the segmentation probability will not add
much to the recognition performance. If, on the other
hand the unit models extrapolate badly on non-unit
segments, then the multiplication by the segmentation
probability in equation 1 will help to suppress the unit
probabilities on the non-unit segments.

We found evidence in the literature that the suppression
of unit probabilities on non-unit segments is important in
segmental posterior distribution model based recognition.
In the Segmental Neural Net (SNN) approach [3], the seg-
mentation probability is not incorporated explicitly, but a
signi�cant improvement of the recognition performance is
obtained by training the SNN negatively on segments be-
longing to incorrect hypotheses in an N-best list and di�er-
ing from the segments found in the correct hypothesis (we
would call this the non-unit segments in the N-best list). As
a result, the SNN is trained to produce low outputs (i.e. low
unit probability estimates) on the non-unit segments. In an
earlier implementation (which was called \1-best training"),
the SNN was exclusively trained on the unit segmentation,
i.e. it was used to estimate the unit classi�cation proba-
bility Pr(ujs;x). The N-best algorithm on the other hand,
trains the joint posterior probability Pr(u; sjx), (i.e. the
left hand side of equation 1) using the N-best list for reduc-
ing the number of possible segmentations. The fact that
the N-best algorithm was found to be signi�cantly better
than the 1-best algorithm, indicates that the segmentation
probability is important.
In section 5.3., we present additional experimental evi-

dence for the importance of the \unseen pattern e�ect".

2.2. Modeling The Segmentation Probability

If we de�ne si as the index of the �nal frame of the ith

segment corresponding with the ith basic unit ui, the seg-
mentation model can be factorized and approximated by:

Pr(sjx) =

L(u)Y

i=1

Pr(sijs0; :::; si�1;x) �

L(u)Y

i=1

Pr(sijsi�1;Yi)

(4)



with L(u) being the length of u, and Yi being a �xed
length segmental feature vector describing the variable
length segment ]si�1; si] in its context.2 The probability
Pr(sijsi�1;Yi) is called the segment probability. Original
work in this area [6] proposed to calculate this probabil-
ity as a product of boundary probabilities, estimated by
a Multi-Layer Perceptron (MLP). In our segment model-
ing approach however [2], we also compute the boundary
probabilities but just as intermediate results in the segment
probability calculation. We estimate the segment probabil-
ity by means of a so-called segment-MLP with one output.
It is trained on all segments that can be hypothesized in the
recognition process and that start on a true unit boundary.
The teaching output is 1 for segments belonging to the unit
segmentation ŝ, and 0 for all others. The least mean squares
cost function was minimized with the standard backpropa-
gation algorithm. The inputs consisted of the duration di of
the candidate segment (i.e. si�si�1) and of Yi. The vector
Yi was composed of three types of segmental features:

� Change functions measuring changes in the parame-
ter vectors x in the segment and in the vicinity of its
boundaries. These functions are the �rst order deriva-
tives of the parameters, the Spectral Variation Func-
tion [7] and the correlation between successive vectors.

� The �nal segment boundary probability and the max-
imal segment-internal boundary probability.

� Averages of the parameter vectors in the initial and the
�nal part of the segment (the partition is determined
by the location of the segment-internal boundary with
maximal boundary probability).

3. UNIT CLASSIFICATION PROBABILITY

The unit classi�cation probability is often approximated by
context-independent models. One then obtains:

Pr(ujs; x) �

L(u)Y

i=1

Pr(uijsi; si�1;Zi) (5)

with Zi being, in our current systems, a �xed length seg-
mental feature vector representing the acoustic observations
observed in the ith segment. The experiments described in
this paper were performed using two di�erent recognizers
incorporating di�erent ways of modeling the unit proba-

bility Pr(uijsi; si�1;Zi): the Stochastic Trajectory Model
(MSTM) recognizer developed at CRIN [8], and the Dis-
criminative Stochastic Segment Model (DSSM) recognizer
developed at ELIS [2].

3.1. MSTM Unit Probability Computation

In the MSTM recognizer[8], Zi is a �xed length vector that
is composed of Q parameter vectors. These Q vectors are
derived from the variable length sequence of parameter vec-
tors x observed within the segment ]si�1; si]. The likelihood
of Zi, given the duration di and the identity of the unit ui
is modeled as:

p(Zijdi; ui)
4

=
X

k2Tui

p(Zijtk; di; ui)Pr(tkjdi; ui) (6)

2It is not required thatYi is a �xed length segmental feature

vector, it just happens to be the case in our current systems

spk alv dof 
f loc ols pab yfg AVG

MSTM 1.62 4.12 0.94 3.92 1.15 1.96 2.02 2.49
MSTMS 0.94 3.85 1.01 0.74 0.74 1.01 1.89 1.45

Table 1. Total word error rates [%] (per speaker and

the mean over the speakers) using the MSTM recog-

nizer in speaker dependent mode, without (MSTM)

and with (MSTMS) segmentation probability

where Tui is the set of component trajectories associated
with ui. Using equation 2, the posterior probability of the
basic unit ui is computed as:

Pr(uijsi; si�1;Zi) =
p(Zijdi; ui)Pr(dijui)Pr(ui)P
v

p(Zijdi; v)Pr(dijv)Pr(v)
(7)

where the summation extends over the complete set of basic
units.

3.2. DSSM Unit Probability Computation

In the DSSM recognizer [2], a Multi Layer Perceptron
(called the unit MLP) is trained to estimate the unit prob-
abilities Pr(uijsi; si�1;Zi). The input vector of the MLP
consists of the duration di and the acoustical evidence Zi

obtained from the parameter vectors x observed in the seg-
ment ]si�1 � 2; si + 2]. The sigmoidal MLP output nodes
correspond to the basic units and were trained by error
backpropagation, using a least mean squares cost function.
The teaching outputs were 1 for the correct unit and 0 for
all the other units.

4. EXPERIMENTS AND RESULTS

4.1. MSTM Recognizer

The experiments with the MSTM recognizer deal with the
French corpus CEA recorded by the CRIN laboratory. The
acoustic parameter vectors are 13th order mel-cepstral vec-
tors including a normalized energy. Context-independent
models are built for 32 phones, including one silence model.
The language model has a word-pair equivalent perplexity
of 48 and a vocabulary of 2010 words. Table 1 shows the
total error rates (including deletion, insertion and substitu-
tion errors) for speaker dependent continuous word recog-
nition. The table contains the results for two situations:
MSTM (using the standard formulation without segmen-
tation probability) and MSTMS (MSTM with segmenta-
tion probability). We observe that adding the segmentation
probability reduces the mean error rate by 42%. This is a
statistically signi�cant improvement (the 95% con�dence
interval for MSTM is 2:2% � 2:8% and for MSTMS it is
1:2%� 1:7%).

4.2. DSSM Recognizer

The experiments with the DSSM recognizer deal with
acoustic-phonetic decoding on the American English cor-
pus TIMIT. Each acoustic parameter vector x consist of
an auditory spectrum, a voicing evidence and a total en-
ergy. The reported results, are results for the 39 phones
set de�ned in [9]. Context-independent phone models were
trained for these 39 phones, and for the glottal stop. Dur-
ing the recognition experiments, we used a phone bigram



# par's 23K 56K 146K 205K 295K

DSSMnoS 41.79 40.42 39.34 36.69 36.62
DSSM 36.53 35.25 34.07 33.37 32.96

Table 2. Total phone error rates [%] of �ve DSSM

recognizers without (DSSMnoS) and with (DSSM)

segmentation probability.

(for these 40 phones) language model. For the evaluation,
the glottal stop was removed from both the recognized and
the true phone sequence. Training was performed on the
sx and si sentences of the NIST designated training corpus.
Testing was performed on the sx and si sentences of the
complete NIST designated test corpus. We have trained
�ve systems, with di�erent recognition performances. The
recognizers di�er in the size of the unit MLP, but they all
use the same segmentation model. Table 2 shows the total
phone recognition error rates (TE) (deletion + insertion +
substitution errors) as a function of the number of param-
eters in the unit MLP.
Again we observe that adding the segmentation proba-

bility gives a statistically signi�cant improvement of the
recognition (the 95% con�dence interval for the best DSSM
recognizer is 32:55% � 33:37%, and without segmentation
probability it is 36:20% � 37:04%).

4.3. Relation To The \Unseen Pattern E�ect"

In order to correlate the importance of the segmentation
probability to the importance of the \unseen pattern e�ect"
mentioned in section 2.1., we have analyzed the posterior
unit probability estimates on unit and non-unit segments.
The analysis was carried out for the �ve DSSM recogniz-
ers that were described in the previous section. For each
of the recognizers, we have calculated the average of the
maximal unit probability estimate over all non-unit seg-
ments. This average is denoted AMPNU. Similarly, AMPU
is the average maximal unit probability estimate over all
unit segments. First of all, we observed that AMPU is al-
ways larger than AMPNU, indicating that the MLP's have
the tendency to consider the non-unit segments as corre-
sponding to none of the units. However, this tendency is
not very �rm. Secondly, we noticed that the relative reduc-
tion of the total phone error rate (RER) due to introducing
the segmentation probability

RER =
TE(DSSMnoS) � TE(DSSM)

TE(DSSMnoS)

is strongly correlated with AMPNU (correlation coe�cient
= 0:765, see �gure 1). We can thus conclude that the less
successfully the unit classi�cation model suppresses the unit
probabilities on non-unit segments, the more important the
segmentation probability (which has the same suppressing
e�ect) becomes.

5. CONCLUSION

In this paper, we have pointed out the role of the segmen-
tation probability [6] in segment-based recognition systems
incorporating segmental posterior distribution models. A
signi�cant improvement of the word recognition accuracies
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Figure 1. Relative reduction of the phone error

rate (RER) vs. average maximal unit probability

estimate on non-unit segments (AMPNU).

was obtained by adding the segmentation probability to the
MSTM [8] word recognizer. Experiments with the DSSM [2]
recognizer con�rmed that the phone recognition accuracy
too is signi�cantly improved by incorporating the segmen-
tation probability. Additional experiments showed that the
importance of the segmentation probability is strongly cor-
related with the inability of unit classi�cation models to
suppress the unit probabilities on non-unit segments.
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