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ABSTRACT

Segment models are a generalization of HMMs that can

represent feature dynamics and/or correlation in time.

In this work we develop the theory of Bayesian and

maximum-likelihood adaptation for a segment model

characterized by a polynomial mean trajectory. We

show how adaptation parameters can be shared and

adaptation detail can be controlled at run-time based

on the amount of adaptation data available. Results on

the Switchboard corpus show error reductions for unsu-

pervised transcription mode adaptation and supervised

batch mode adaptation.

1. INTRODUCTION

Conventional hidden Markov models (HMMs) do not

impose any constraints on spectral trajectories, allow-

ing them to be discontinuous in time within a state.

However, we know that the smooth motion of the artic-

ulators imposes natural constraints on the trajectory.

Recently, researchers have proposed parametric mod-

els for spectral trajectories in the form of polynomials

[1, 2]. These models compare favorably with HMMs on

constrained tasks like vowel-classi�cation [1, 3], isolated

word recognition [2] and connected digit recognition [4];

and recent results show they are also viable for large

vocabulary continuous speech recognition (LVCSR) ap-

plications [6]. However, no adaptation algorithms have

been reported for such models.

In this work, we develop the theory for Bayesian

adaptation of a polynomial trajectory segment model

(PSM), and explore transformation tying in the con-

text of an LVCSR system. The PSM has the advan-

tage that it allows adaptation of the entire trajectory

with all observations of the segment. For HMMs, this

is only possible by making assumptions such as a tied

constant transformation across all states in the phone.

This work was supported by the Department of Defense,

ONR Grant N00014-92-J-1778.

We use a PSM clustering algorithm to de�ne parame-

ter tying for robust context-dependent model parame-

ter estimation, and also for variable control of adapta-

tion detail based on amount of adaptation data. Ex-

perimental results show gains from adaptation in unsu-

pervised transcription-mode recognition on the Switch-

board corpus. We begin by de�ning the PSM and clus-

tering algorithm in Section 2. Section 3 develops the

theory for Bayesian adaptation of the PSM. Experi-

mental results and conclusions are in Section 4 and

Section 5.

2. BASIC PSM AND CLUSTERING

In the PSM, a sequence of d-dimensional frame-level

observations is assumed to be generated by a Gaussian

process with a mean modeled by a sampled polynomial

trajectory. Assuming the covariance � is constant in

a segment, the likelihood of an n-length observation

segment Y = [y1; : : : ; yn] is given by

p(Y jB;�) = P (n)

nY

j=1

p(yj j�j ;�); (1)

where P (n) is the duration probability and the se-

quence of means used in computing the likelihood is

de�ned as [�1 : : : �n] = BZn. B is a d�r matrix of co-

e�cients for polynomial order r�1, and Zn is an r�n

time sampling matrix. Maximum likelihood (ML) esti-

mates of B and � are computed as in [1].

Robust context-dependent models are obtained by

tying parameters via distribution clustering. ML clus-

tering of Gaussians, e.g. [5], is a standard technique

used for estimating robust context-dependent models in

speech recognition. In [6], we show that this technique

can be extended to cluster PSMs. For both Gaussians

and PSMs, the clustering algorithm is a binary tree

growing procedure that successively partitions the ob-

servations (splits a node in the tree), at each step mini-

mizing an ML splitting criterion over a pre-determined



set of allowable binary partitions. In the PSM case,

observations are whole segments and each node repre-

sents a Gaussian process with a polynomial mean and

�xed covariance. Triphone models are clustered with

candidate partitions found by asking linguistically mo-

tivated questions.

3. ADAPTATION THEORY

If the time warping matrices (fZng) are shared by all

PSMs, the parameters Bk and �k characterize a model

k. We investigate adapting the trajectory mean, given

by Bk, taking either an ML or Bayesian approach. In

conventional Bayesian or Maximum a posteriori proba-

bility (MAP) estimation, the new mean Ba
k is estimated

from a prior for Bk and sample observations of model

k. Here, we instead choose to estimate and have a

prior for the shift, F , where Ba
k = Bk +F , as in [7] for

HMMs. Estimating Ba
k indirectly in this way has the

advantage that the shift can be shared across a class of

models. We �rst consider the case where each model

has a di�erent shift followed by the case where a class

of models share a shift. Then we describe a method to

estimate the shift priors and de�ne classes of models

that share a shift.

MAP estimate of model-dependent shift

If B = [b1 : : : br], de�ne BV
4

= [b01 : : : b
0

r]
0, i.e. a (dr� 1)

column vector formed by stacking the columns of B.

We can write the adaptation equation for the new mean

Ba as a shift Ba
V = BV + FV : The MAP estimate of

the shift for a model given a set of independent segment

observations Y = fYig where Yi = [yi1; : : : ; yini ] is

F̂V = argmax
FV

[p(FV jY ; B
a;�)]

= argmax
FV

log[p(FV )
Y

i

p(YijB
a;�)]

4

= argmax
FV

Q:

The log-likelihood of the observations is

log
Y

i

p(YijB
a;�) = �

1

2

X

i;j

g0ij�
�1gij +K

where gij = yij � (B + F )zij

= eij � Fzij

= eij(z
0

ij 
 Id)FV ;

eij = yij�Bzij , zij is the jth column of Z for Yi, Id is a

d�d identity matrix, 
 denotes the Kronecker product,

and K includes all terms without F . Assuming FV �
N (0;�FV ), we set

@Q
@FV

= 0 to get

��1FV F̂V +
X

i;j

[�(zij 
 Id)�
�1eij

+ (zij 
 Id)�
�1(z0ij 
 Id)F̂V ] = 0;

or

[��1FV + C 
��1]F̂V =
X

i;j

zij 
��1eij ; (2)

where C is a r � r matrix with entries

cmn =
X

i;j

zij(m)zij(n):

This represents a linear system of dr equations which

can be solved for F̂V . Note that the Gaussian prior is

similar to that used in [4], but the solution in our case

is slightly di�erent because a shift F is modeled rather

than the mean B for parameter tying in adaptation.

MAP and ML estimate of class-dependent shift

If a class of models is constrained to share the same

shift F , the adaptation equation in this case is Ba
V;k =

BV;k + FV , where k is the model index. The resulting

equation for the MAP estimate has sums over k for all

models that share the same shift.

[��1FV +
X

k

Ck 
��1k ]F̂V;MAP =
X

i;j;k

zij 
��1k eij (3)

where Ck is the C matrix computed for class k. If the

ML estimate of the shift is desired, it can be found by

ignoring the prior term ��1FV in Equation 3.

Prior Estimation

To estimate the prior of the shared shift for models

within a class, we �rst compute the best shared shift in

the ML sense using all the observations for the class in

the utterance. Collecting these shared shifts, we com-

pute the covariance �FV for the prior FV � N (0;�FV ).

The shifts can be based on a \leave-some-out" paradigm,

i.e. train the B;� parameters on a part of the data and

estimate the shifts on the remaining part, cycling over

all parts of the data or by using all the data without

cycling for B;� and the shifts. In practice, we found

the latter approach much cheaper to implement with

no performance loss over the former.

PSM Class De�nition and Shift Usage

The nodes of the clustering tree created in Section 2 can

also be used to de�ne the classes of models that share

the same shift. During the prior estimation phase, ML

shifts are computed at pre-determined intervals at all

nodes of the tree where there are any observations.

During recognition, shifts from the most detailed node

with more than TS (shift threshold) adaptation frames



are used, i.e. the class de�nition becomes more speci�c

(dynamically at run-time) while maintaining robust-

ness of the estimates as adaptation data increases. All

leaves in the subtree below the lowest node that passes

the TS threshold share the same shift. The variable

threshold is primarily useful for ML estimation, but

may also be used in MAP estimation to discount the

e�ect of the prior.

4. EXPERIMENTS AND RESULTS

Experimental Conditions

A phone is modeled here with two regions each char-

acterized by a linear PSM (i.e. B = [b1 b2]) with a

single full covariance. Z is a linear time-sampling ma-

trix. Using two linear trajectories per phone can be

thought of as approximating a quadratic trajectory. It

also allows us to tie (cluster) parameters at a sub-phone

level, which has been shown to be more e�ective than

tying at a phone level. Feature vectors include the �rst

14 mel-warped cepstra with �rst order di�erences plus

the �rst di�erence of log energy, computed every 10 ms.

Cepstral mean subtraction is done on a per utterance

basis, and feature vectors are normalized for vocal tract

length [8] (which gives less of an opportunity to show

adaptation gains). Experiments were conducted on the

Switchboard corpus, which has telephone-quality con-

versational speech [9]. Sixty hours of speech (a subset

of the training corpus) are used for training gender-

dependent models.

To reduce the computational cost of segment-based

models, we use the N-best rescoring formalism. Specif-

ically, the top N (=100) word-sequence hypotheses pro-

vided by BBN's Byblos system are rescored by the PSM

and reranked by linearly combining the PSM log acous-

tic score with insertion penalties (the number of words

and phones in the sentence), a trigram language model

score and a duration score (based on relative frequency)

to minimize average word error in the top ranking hy-

potheses [10].

Adaptation Choices

There are many implementation choices for adaptation

and we explored the following {

� ML vs. MAP

� adapt full B (F = [f1 f2], o�set and slope) vs.

part of B (F = [f1 0], o�set only)

� transcription vs. batch mode

� in batch mode, supervised vs. unsupervised.

Statistics for shift estimation (feijg in Equation 3)

are collected from the adaptation data (entire conversa-

tion for transcription-mode or a fraction of the conver-

sation for batch-mode) based on the hypothesized seg-

ment labels and times from recognition with a speaker-

independent model. Speaker adapted models, obtained

from these statistics, are then used to score the entire

conversation in a second pass for transcription-mode or

the rest of the conversation for batch-mode. For unsu-

pervised adaptation, the adaptation data are segment

labels and times from the top ranking hypothesis, while

for supervised adaptation, they are from the \forced-

alignment" of the true word sequence.

The implementation cost for adaptation is a small

part of the recognizer needs. Memory is needed to accu-

mulate statistics for the shift and priors (for the MAP

case) and scaling from half B to full B results in an

increase in memory needs of 3-4 times. However the

entire memory usage of the PSM recognizer with adap-

tation are still about the same as that of an unadapted

non-parametric mean trajectory segment model system

(BU-SSM).

Adaptation Experiments

We present recognition results for a development test

set (dev96) comprising 7 conversations (14 speakers

and 6381 words, with an average of 2.3 min speech/speaker).

Score combination to determine the best hypotheses

used weights optimized over the same test set. The

baseline recognition system has an average word error

rate of 43.1%. In comparison, the BU-SSM system re-

sults in 43.0% with three times as many parameters

as the baseline PSM system, indicating that the PSM

system is parsimonious and viable for LVCSR [6].

Transcription Mode

Unsupervised transcription-mode rescoring with the

adapted models results in consistent improvement for

all cases with the best case being 0.8% absolute better

than the baseline, as shown in Table 1. ML and MAP

result in similar performance; adapting full B is better

than adapting half B. We �nd that a non-zero thresh-

old TS is useful for MAP as well as ML adaptation,

probably because a low TS makes the shifts sensitive

to recognition errors.

Batch Mode

The batch mode experiments use the �rst half of the

conversations as adaptation data and the second half

for reporting results. The baseline word error rate for



Table 1: Unsupervised transcription mode results.
Baseline (unadapted) WER = 43.1%.

avg # word error rate %

TS of shifts F = [f1 0] F = [f1 f2]

ML MAP ML MAP

10 2112 42.7 42.7

25 828 42.4 42.5 42.4 42.4

50 374 42.5 42.6 42.3 42.3

75 223 42.7 42.6 42.6

dev96 is 44.6% and adaptation results are given in Ta-

ble 2. Again, we see that ML and MAP schemes give

similar performance. All supervised cases show an im-

provement over the baseline, but unsupervised cases do

not and require a higher TS, probably because of the

high baseline error rate. A smaller than optimal TS in

supervised batch mode hurts performance because of

the inability to generalize to unseen contexts.

Table 2: Batch mode results. Baseline (unadapted)
WER = 44.6%.

avg # word error rate %

TS of shifts F = [f1 0] F = [f1 f2]

ML MAP ML MAP

Unsupervised batch

75 84 45.0 44.6 44.8

100 50 44.8 44.8 44.7 44.7

250 4 44.6 44.6

Supervised batch

10 1167 44.0 43.8 43.9 43.7

25 423 43.8 43.9 43.5 43.5

50 168 44.1 44.1 44.0 44.1

75 84 44.2 44.3

5. CONCLUSION

In this work, we have developed a theory for Bayesian

and ML adaptation of polynomial trajectory segment

models. To be useful in LVCSR systems which have a

large number of parameters, adaptation is modeled as

a (shared) shift of the mean matrix and the shift detail

is determined dynamically at run-time to yield better

performance with more adaptation data. Adaptation

gains of about 1% absolute on the Switchboard corpus

are demonstrated for unsupervised transcription-mode

adaptation.

We �nd adaptation of full B is slightly better than

partialB, and adaptation using ML orMAP give roughly

the same performance. We conjecture that the high op-

erating word error rate of the Switchboard corpus im-

pacts the choice of the shift threshold TS (a larger TS
is needed for more robust transformations), as well as

limits the usefulness of unsupervised batch adaptation.
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