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ABSTRACT.

Indexing of video soundtracks is an important issue for the
navigation in multimedia databases. Based on wordspotting
techniques, it should meet very constraining specifications;
namely fast response to queries, concise processed speech
information for limiting the storage memory, speaker
independant mode, easy characterization of any word by its
phonemic spelling. A solution based on phonemic lattices and
on a division of the indexing process into an off-line and an on-
line part is proposed in this paper. Previous works [1][2] based
on frame labelling and Maximum Likelihood criterion are now
modified to take into account this new approach based on a
Maximum a Posteriori (MAP) criterion. The REMAP algorithm
[3] implements this MAP criterion for training. It has several
avantages such as maximizing the global discriminant criterion,
avoiding the difficult problem of phoneme transition detection
during the training process and being well suited for a hybrid
Hidden Markov Model (HMM) and Neural Network (NN)
approach.

1. INTRODUCTION.

Multimedia databases contain an increasing amount of videos
that are hardly semantically accessed. Content based indexing
tools are thus of primary interest for easy access to the
information. The search for semantically described events may
rely on the video content itself (face recognition, scene
understanding) but also on the soundtrack.  Few works [4]
[5][6] on this topic have been reported so far. Among the useful
indices that can be extracted from the soundtrack, localization
of keywords plays a prominent role.

This paper deals with the specificities of such a keyword spotter
and the enhancement brought to our previous techniques [1] [2],
by using a Maximum a Posteriori (MAP) approach. Indeed, this
approach bypass the delicate problem of abrupt phonemes
transitions detections. To be useful, such a keyword spotter has
to be speaker independent. Moreover it has to be able to detect
any word out of an open vocabulary. This directly implies the
use of a phonemic representation of the word. These severe
constraints lead to an excessively time consuming tool. The
division of the indexing process into two parts, the first one off-
line, the second one at the query time, allows a faster response.

The off-line job consists in building a lattice of phoneme
hypotheses based on the result of a hybrid Hidden Markov
Model (HMM) and Artificial Neural Network (ANN) using a
MAP approach. This lattice is supposed to contain all the
required speech information for the search of a keyword that
will take place in an on-line process. Therefore this is the only
data saved for the on-line treatment. At each query, this lattice
is parsed, searching for the specific keyword.
The REMAP algorithm used for training and searching is
briefly described in section 2, where its discriminant properties
and transitions probabilities characteristics are shown. Section
3 describes the REMAP-based phonetic hypothesis generation.
Section 4 presents our search algorithm over the lattice.
Conclusions and primary results comments are given in section
5.

2. REMAP ALGORITHM.

2.1. GENERAL

The a posteriori probability approach can be viewed as follows:

given a spoken sentence to be learned, let denote , the HMM

model to be associated with,  the states of this model, each of

them representing a specific phoneme  and

 the sequence of acoustic vectors

extracted from this sentence.
To learn the model, we tend to maximize the a posteriori

probability: ,

where  and , respectively represent the parameter set of the
acoustic model and language model. The a posteriori

probability,  can be written as the sum

associated with the valid paths in the model

where ,is the set of all valid paths in .
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This representation better matches with the Baum Welch
approach than the  Viterbi one, see [3][9].
The first factor of the right hand side denotes the acoustic model
and the second factor denotes the language model

2.2. ACOUSTIC MODEL .

If we denote  the state visited at time   by the path , we

can write the acoustic model as follows:

where we make the successive hypotheses:
• The acoustic model is independant of the language param-

eters, .
• We use a first order Markov model.
• This probability is only dependant of a temporal window

of length  of acoustic coefficients, .

Note that these local probabilities can easily be evalutated with
a MLP [7].

2.3. LANGUAGE MODEL .

The language model can be describe by :

According to the successive assumptions that, knowing the path

, i.e. the phonetic sequence:

• The model can be found without an explicit dependance

on .
• The language model is independent of the acoustic param-

eters, .
• A first order Markov model is used.
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2.4. TRAINING ALGORITHM .

The embedded Viterbi training of hybrid HMM-NN’s [7] is an
iterative process. At a given iteration, an optimum alignment,
obtained from the Viterbi algorithm, provides an updated
segmentation. This one is used to modify the target functions
for the subsequent MLP training (error backpropagation
algorithm). This newly trained MLP is in turn used by the
Viterbi for the next segmentation update. In this classical
learning method, the target outputs are set to 0 or 1 according to
the phoneme segment the vector belongs to.

In a similar way, the REMAP approach is based on a successive
MLP training scheme. But unlike the classical learning method,
no Viterbi algorithm and no segmentation are used.
In this iterative scheme, the MLP trained in the previous
iteration is used to estimate transition probabilities from which
new targets will be derived. These one are then used for the next
MLP training.

Proof of convergence of this iterative process is given in [3].

More specifically, the convergence of  to a local

maximum is proved provided the re-estimation of MLP target
outputs are given by :

. (1)

These new conditional transition probability targets are used in
the MLP training algorithm to update the MLP parameters

according to the appearance probability  of :

.(2)

The right-hand of equation (1) ,  can be

evaluated according to a backward procedure derived as
follows:

In the other hand, (2) is obtained from a forward-backward
procedure :
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where :

•  can be evaluated with:

,

under the assumption that  can be

approximated by

•  can be neglected or

estimated via an autoregressive model.

•  can be evaluated with:

,

under the same assumption that for , plus the first

order Markov model restriction.

2.5. PHONEME TRANSITION PROBABILITIES .

In fig 1, the local phonemes probabilities estimated by (1) are
plotted along the time axe. It can be easily noticed that the
transitions between most probable phoneme are smooth and let
the system take less abrupt decision. This will lead to a more
flexible recognition system than an standard HMM-NN
approach.

3. LATTICE GENERATION.

For each spoken sentence, a lattice is constructed from a set of
phoneme hypotheses and their interconnections. Each
hypothesis contains the phoneme probability, its label and the
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Fig 1: Phonemes transitions

begining and ending vectors. A similar method than in [2] is use
to extract this lattice out of the acoustical vector sequence.

3.1. SEGMENT DETECTION .

A forward backward process is used in order to extract
phoneme bounds and probabilities, out of the acoustic vectors.

In the forward process, a N-Best-like algorithm is used in order
to obtain, not only the best path and its corresponding
segmentation, but also  at the end of each segment, the N-Best
finishing paths. The lattice is initialized with the best segment
boundaries which defined the nodes of the lattice.

In the backward step, according to the end of each segment, the
N best finishing paths are analyzed in order  to extract their last
phoneme. For each detected phoneme, their respective begining
bounds are use to enhanced the lattice by adding the
coresponding new nodes (see fig 2). Details can be found in [2].

3.2. SEGMENT PROBABILITY .
For each segment between two consecutive nodes of the lattices

the N best phoneme,  are considered. The probability of

over this segment is computed by:

where  stands for  with

. Thus, a phoneme hypothesis can be denoted by

, as it relies on the beginning and ending frame

indexes of the current phoneme  and its probability

, noted  when no confusion is possible.
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Fig 2: Lattice generation.
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4. SEARCH OVER THE LATTICE.

As phoneme hypotheses can be grouped according their
begining and ending frames, jumps between phonemes
hypotheses are no longer required during  search process as in
[1]. This makes the search algorithm more powerful.

4.1. CONFUSION MATRIX

As in [2], a confusion matrix that takes into account similarities
between phonemes will be used in order to recover phoneme
misrecognition or mispronunciation of the searched keyword.

Let us note , the set of all acoustic vectors labeled by the

correct phoneme . Given a standard HMM of the language,

composed with the states , associated with phonemes , we

can compute the confusion probability:

,

where  is estimated over .

4.2. ALGORITHM

Let  be the phonetic transcription of the

searched keyword.
For eachgroup of hypotheses having the same boundaries,

, where , we

compute, using the confusion matrix:

,

generating a new lattice, , of  new hypotheses, specific to
the keyword.

Next, we search the best sequence of hypotheses denoted

, which maximizes the probability:

, where

and such that if ,

then .

The search of the optimal sequence of hypotheses is based on a
recursive process.

The initialization process consists in searching over all the

lattice , each hypothesis ,

 of occurrence of the first phoneme

.
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2. In each step , for the last hypothesis of

, denoted , we next search for

hypotheses  of occurrence of , such

that .

3. For each hypothesis  found,we build

, and calculate

If no hypothesis  is found, let  and go to 2.

4. if , set ,and go to 2.

5. if  and if  is the maximum sequence proba-

bility encountered, we keep this sequence .

At the end of this process which runs over the whole lattice, the

sequence  showing the maximum probability,

 is found.

5. CONCLUSION.
In this paper, we presented a new application of the REMAP
algorithm. Comparison between this new approach and our
previous works is under work.  Significative improvement of
our phoneme lattice is expected due to the global discriminant
proporties of the REMAP trained models and the first results of
simulation.
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