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ABSTRACT

Most of the well known and widely used pitch determina-

tion algorithms are frame-based. They only consider the

speech local stationarity within the analysis frame. How-

ever, our novel pitch determination algorithms employ the

steerable �lters to obtain the direction of pitch change.

Therefore, the proposed algorithms not only make full use of

the information within an analysis frame, but also optimally

utilize the information from neighbor frames by taking the

advantage of the pitch direction. This allows us to use more

than one frame to enhance pitch peaks for non-stationary,

noisy speech signals. As a result, the proposed algorithms

are superior to conventional methods in term of accuracy

and reliability, and is robust to noise. Besides, the direc-

tion of pitch change can be estimated in di�erent domains.

Therefore, our algorithms can be applied in either time or

frequency domain, or both of them.

1. INTRODUCTION

Pitch conveys some useful information on speaker and lan-

guage. Accurate estimation of the pitch period (T0) or fun-

damental frequency (F0) of speech signals is essential to

many applications, such as low bit rate speech coding[1],

comb �lter based speech enhancement[2] and psychiatric

researches[3]. For tone languages, pitch is one of the major

features used in speech recognition. Therefore, the pitch

determination is an important issue in speech processing.

Many pitch determination algorithms (PDA) have been pro-

posed in di�erent domains in past decades. A good survey

of these algorithms was given by Hess[1]. However, pitch

determination still constitutes one of the most problematic

topics in speech researches due to the non-stationarity of

speech signals and noise corruption. In order to combat

the noise corruption, a long analysis frame must be used in

conventional algorithms. However, if a signi�cant change of

pitch period or formant frequencies occurs over the analy-

sis frame, the smearing e�ects will be introduced. When a

short analysis frame (� 2T0) is used, the position of window

and the noise corruption will greatly inuence the accuracy

and reliability of pitch estimation. Many PDAs fail over

these non-stationary and low SNR frames. Usually, pitch

tracking algorithm[4] is used as the post-processing to re-

duce the errors in most PDAs. But, some errors are not

recoverable.

In this paper, we proposed to use more than one analysis

frame to enhance the robustness to noise and to improve

the accuracy and reliability of PDAs. Our algorithms are

based on the following facts:

� Speech is a dynamic and information-bearing process.

Therefore, it remains stationary only in short time.

� The rate of pitch period change is a random process

in long term. However, it approximates to a constant

over few short frames.

Therefore, an optimal �lter for pitch detection should have

following properties:

� It's a low-pass �lter for inter frames in the direction of

pitch change. Therefore, it can alleviate the inuence

of window positions and smearing e�ect and reduce

noise.

� It's a band-pass �lter for intraframe to optimally en-

hance pitch peak.

� Its orientation is tunable to adapt the direction of pitch

change.

Two dimensional Gabor �lters and the orientational deriva-

tive Gaussian �lters satisfy these properties. Because the

orientational derivative Gaussian �lters are steerable and

separable[5], they need much less computation than Gabor

�lters in estimating the direction of pitch change. There-

fore, we use the orientational derivative Gaussian �lters in

our experiments.

2. STEERABLE FILTERS

Oriented �lters are widely used in computer vision and im-

age processing, such as motion analysis, edge detection,

line parameter estimation and texture analysis. Usually,

the motions, edges and lines can be characterized by a set

of parameters: position, orientation, velocity and size (or

width), etc., and can exist at any possible positions and

orientations. In order to adapt their parameters, we should

be able to obtain the response of a �lter at an arbitrary po-

sition and orientation. It is practically impossible to tune

the �lters to all possible positions and orientations in real-

time. Because the computation is too huge by this way. The

e�cient way is to design a family of �lters that any �lter in

this family can be represented by few basis �lters. There-

fore, the output of a �lter can be expressed as a weighted

sum of outputs of the designed basis �lters. Such �lters are

called \steerable �lters".



2.1. 2D Steerable Filters

In two-dimensional case, the rotations are operated in the

plane. The steerable �lters can be expressed as a lin-

ear combination of basis functions. The de�nition of two-

dimensional steerable �lters[5] is:

f
�
(x; y) =

MX
j=1

kj(�)gj(x; y) (1)

where f
�(x; y) represents f(x; y) rotated by an angle �

about the origin, gj(x; y) is the jth basis �lter, kj(�) is

the interpolation function of gj(x; y) and M is the number

of basis �lters. The minimal number of basis �lters required

to steer a two-dimensional function depends on the number

(N) of harmonics which span the function using a Fourier

series in polar coordinates. The basis �lter gj(x; y) is the

rotated version of steerable �lter f(x; y) at a designed angle.

The steering condition (1) holds if and only if M � the

minimal number of basis �lters required and the interpola-

tion function kj(�) satis�es
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A convenient way[5] to determining the minimal number of

basis �lters is to express the steerable �lters as polynomials

in Cartesian coordinates:

f(x; y) = PT (x; y)W (r); (3)

where W (r) is a windowing function, r =
p
x2 + y2, and

PT (x; y) is a T th order polynomial in x and y. T +1 is the

minimal number of basis �lters required.

2.2. 2D Separable Steerable Filters

If a steerable �lter is with separable bases, we can further

greatly reduce the computational costs. The separable �lter

can be expressed as a polynomial in x and y. Thus, the �lter

is written as:

f(x; y) =
X
i

X
j

�ij(�)x
i
y
j
W (r); (4)

where

W (r) =W (x)W (y);

and �ij(�) are the coe�cients. If the kernel size of the

steerable �lters is S�S, the estimation of orientation using

steerable �lters becomes an O(SM) process instead of an

O(S2
M) process. Therefore, it is important to choose the

steerable �lters with separable bases if computational costs

are vital to the system.

3. THE DETERMINATION OF PITCH

CHANGE DIRECTION

According to the theory of speech production, the pitch

mainly depends on the glottis, subglottal pressure and

tenseness of vocal-cord. Usually, these factors change much

Figure 1. Top: Speech waveform of the sentence \We were
away." spoken by a male; Bottom: Spectrum of the speech.

slowly compared with the momentary position of the vo-

cal tract. The direction of pitch change also does not

vary rapidly. The speech narrow-band spectrum in Fig.1

show that the F0 and its harmonic peaks appear as smooth

curves. Therefore, it is appropriate to use more than one

analysis frame to estimate the pitch period.

3.1. Orientational Gaussian Filters

Consider the speech features f(z; t) in two dimensional

space, where t is time and z is the coordinate in speech

processing domain which is time or frequency. The support

Gaussian kernel G(z; t) is

G(z; t) = k exp[�(
z
2

�2z
+

t
2

�2t

)] (5)

where k is a normalization constant and �z and �t are scal-

ing constants of z and t respectively. We rewrite above

equation as

G(x; y) = k exp[�(x
2
+ y

2
)] (6)

where x = z=�z and y = t=�t. The �rst and second deriva-

tive of Gaussian function used in our experiments are:

G1(x; y) = �1:82x exp[�(x2 + y
2)]

G2(x; y) = (1� 2x2) exp[�(x2 + y
2)]:

(7)

Let G�
i (x; y) represent Gi(x; y) rotated by an angle � about

the origin, where i = 1 or 2. Since the rotation does not

change the Gaussian function and the polynomial is still a

polynomial after rotation operation. According to (1) and

(4), it is easy to �nd that G1(x; y) and G2(x; y) are sep-

arable and steerable �lters. The minimal number of basis

�lters for G1(x; y) and G2(x; y) is 2 and 3, respectively. The

chosen basis �lters are G0�

1 (x; y) and G90�

1 (x; y) for G1, and

G
�45�

2 (x; y), G0�

2 (x; y) and G
45�

2 (x; y) for G2.



3.2. The estimation of orientation of pitch curves

For pitch detection, two order derivative of a Gaussian is

necessary and enough. This is because that there is no

junction in pitch curves and higher order derivative of a

Gaussian will result in higher computation costs.

Once the bases of steerable �lters are determinated, we

can apply them to estimate the direction of pitch change.

Usually, the orientation is estimated from a Fourier series

of oriented energy[5], E(�), which is the squared output of

G
�
2(x; y) and its Hilbert transform. This involves Hilbert

transform and Fourier expansion which increase the com-

putation costs. Moreover, the algorithm[5] disregards the

higher order terms of the Fourier series. Therefore, it will

result in inaccuracy in some cases. In order to avoid these

disadvantages, we use G�
1(x; y) to replace the Hilbert trans-

form of G�
2 and directly use the outputs of G�

i (x; y), which

have no higher order terms, instead of the oriented energy.

Let O
�
i (x; y) represent the output of oriented �lter

G
�
i (x; y). The outputs of steerable �lter G

�
1 and G

�
2 are

O
�
1(x; y) = cos(�)O

0�

1 (x; y) + sin(�)O
90�

1 (x; y); (8)

and

O
�
2(x; y) = cos(2�)O0�

2 (x; y)

+sin(�)[sin(�) + cos(�)]O45�

2 (x; y)

+sin(�)[sin(�)� cos(�)]O�45
�

2 (x; y):

(9)

Let
@O�

2

@�
= 0, we can obtain two possible orientations �1

and �2 which may maximize the oriented energy of O�
2(x; y):

�1(x; y) =
arctan[O45�

2 �O
�45�

2 ; 2O0�

2 �O
45�

2 �O
�45�

2 ]

2
;

�2(x; y) =
arctan[O�45

�

2 �O
45�

2 ; O
45�

2 +O
�45�

2 � 2O0�

2 ]

2
:

(10)

The optimal estimation of orientation for O�
2(x; y) is

�d2(x; y) =

�
�1(x; y) if jO�1

2 j > jO
�2
2 j,

�2(x; y) else.
(11)

Similarly, let
@O�

1

@�
= 0, we can obtain the optimal estimation

of orientation for O�
1(x; y):

�d1(x; y) = arctan[O
90�

1 ; O
0�

1 ]: (12)

The �nal direction of pitch change is determined by the

stronger one. It is given by

�d(x; y) =

�
�d1 if jO

�d1
1 j > jO

�d2
2 j,

�d2 else.
(13)

Because, the G�
2(x; y) is a zero phase �lter across its center,

the peaks of O
�d
2 (x; y) occur at the same positions of pitch

and its its harmonic peaks. Moreover, the orientations at

peaks are determined by O�
2(x; y) only. Therefore, O

�d
2 (x; y)

is used for pitch determination.

4. PITCH DETERMINATION

For short-term analysis PDAs, the T0 is de�ned as the aver-

age pitch duration in a given analysis frame. The proposed

PDAs are based on the conventional PADs[6,7] cooperating

with steerable �lters which are used to enhance the pitch

information.

4.1. Pitch detectors based on autocorrelation

analysis

The autocorrelation analysis plays an important role in

many aspects of speech processing. The short-term auto-

correlation function is de�ned as

rs(�;m) =
1

L

1X
n=�1

s(n)w(m� n)s(n� j�j)w(m� n+ j�j);

(14)

where L is the length of analysis frame, w(n) is the window

function, � is time lag, s(n) is the speech signal and m is

the window position. In our experiments, we use hamming

window to alleviate the inuence of window position. The

conventional algorithm and our proposed method are shown

in Fig.2.

Speech Correlator Pitch Detector

Speech FFT Steerable Filter

Steerable Filter Pitch DetectorIFFT

a

b

Window

Window 2

Figure 2. (a) Conventional autocorrelation pitch detector;
(b) Oriented �ltering-autocorrelation pitch detector.

A C

B D

Figure 3. Pitch determination by autocorrelation based
algorithms. A, B are the results of conventional algorithm;
C, D are the results of proposed algorithm. The speech in
A and C is clean, and in B and D is noisy(SNR=0 dB).

In this proposed method, the autocorrelation sequence is

computed by FFT . So, the steerable �lter can be applied

on speech spectrum to enhance the F0 and its harmonic

components. After �ltering, the spectrum valleys, which

have low energy and are susceptible to noise corruption,



become negative. Therefore, the robustness of the pitch de-

tector to noise can be signi�cantly enhanced by removing

the negative parts. The steerable �lter applied on autocor-

relation sequences further enhances F0 peaks. Fig.3 shows

the results of the two algorithms. Clearly, our proposed

algorithm is superior to the conventional one in robustness.

4.2. Pitch detectors based on cepstral analysis

Cepstral analysis o�ers another way to estimate F0. Due

to the spectral attening which is performed by taking

logarithm, the cepstral analysis based PDAs work well in

good acoustic conditions. In comparison with autocorre-

lation based PDAs, the cepstral PDAs are not susceptible

to the inuence of speech formants (particularly, the �rst

formant). But, their fatal shortage is that they are very

susceptible to noise. Therefore, the robustness to noise is

a key issue for this category of PDAs. The steerable �lters

provide a good solution to the problem of noise corruption.

Fig.4 shows the ordinary cepstral PDA and our proposed

algorithm.

Speech Pitch Detector

Speech Steerable Filter

Steerable Filter Pitch DetectorIFFT

a

b

Window

Window log|FFT|

log|FFT| IFFT

Figure 4. (a) Ordinary cepstral analysis based pitch de-
tector; (b) Oriented �ltering-cepstral pitch detector.

A C

B
D

Figure 5. Pitch determination by cepstral analysis based
algorithms. A, B are the results of ordinary algorithm; C,
D are the results of proposed algorithm. The speech in A
and C is clean, and in B and D is noisy(SNR=0 dB).

Similarly, this proposed algorithm applies on the loga-

rithmic spectrum and cepstrum. We also set the negative

parts of logarithmic spectrum to zero to reduce noise. Be-

sides, the orientational �lter is a low-pass �lter along the

pitch curves, it further enhances the pitch peaks. This

make our proposed algorithm become one of the top robust

algorithms to white noise and the results shown in Fig.5

have proven that. Fig.5(B) shows the ordinary algorithm

fails at the condition of SNR=0 dB where speech is cor-

rupted by white Gaussian noise. But our proposed one still

gives a good result shown in Fig.5(D). Moreover, the low-

pass �lter along pitch curves takes more information from

neighbor frames, it reduces the smearing e�ects caused by

non-stationarity. Another advantage of the �lter is that the

equivalent frame length is longer than L. Consequently, it

greatly alleviates the inuence of window positions. The

results are shown in Fig.6, where the pitch of clean speech

is estimated by two algorithms.
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Figure 6. Left: Pitch estimated by ordinary cepstral de-
tector; Right: Pitch estimated by proposed detector.

5. CONCLUSION

In this paper, we have presented two pitch determina-

tion algorithms using separable, steerable �lters. The ori-

ented �lters are applied in both time and frequency do-

mains. Because the �lters can adapt the orientations of

pitch curves, they optimally utilize the information from

neighbor frames. The experimental results show that our

proposed algorithms are more robust to white noise, less

sensitive to non-stationarity and window positions than

conventional algorithms. Besides, the principle of proposed

algorithms can be applied on most frame-based PDAs.

REFERENCES

[1] W. Hess, Pitch determination of speech signals,

Springer-Verlag, 1983.

[2] J.R. Deller, J.G. Proakis and J.H.L. Hansen, Discrete-

time processing of speech signals, Macmillan Publishing

Company, 1993.

[3] �A. Nilsonne,\Acoustic analysis of speech variables dur-

ing depression and after improvement," ACTA Psychi-

atrica Scandinavica, Vol.76, pp.235-245, 1987.

[4] B.G. Secrest and G.R. Doddington, \An integrated

pitch tracking algorithm for speech systems," proceed-

ing of international Conference on Acoustic, Speech

and Signal Processing, pp.1352-1355, 1983.

[5] W.T. Freeman and E.H. Adelson,\The design and use

of steerable �lters," IEEE trans. on PAMI. Vol.13,

pp.891-906, 1991.

[6] L.R. Rabiner, \On the use of autocorrelation analysis

for pitch detection," IEEE Trans. on ASSP. Vol.26,

pp.24-33, 1977.

[7] A.M. Noll, \Cepstrum pitch determination," Journal

of the Acoustical Society of America, Vol.14, pp.293-

309, 1967.


