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ABSTRACT

We present a new approach to the linear representation of
speech signals that combines desirable structure, computa-
tional e�ciency and almost decorrelation. The basic princi-
ple is a statistically adapted, group{theoretical modi�cation
of the classical Gabor expansion. In contrast to traditional
linear time{frequency (TF) representations which always
correspond to a separable tiling of the TF plane, we sug-
gest the use of a hexagonal (thus nonseparable) tiling whose
parameters are matched to the TF correlation of the speech
signal. We estimate the TF correlation via a pitch{adapted
Zak{transform motivated by modeling the vocal tract as
underspread system. The TF correlation determines both
the optimum tiling and the optimum window.

1. INTRODUCTION

Typical modern speech processing algorithms involve a cas-
cade of linear and nonlinear (signal adaptive) transforms.
In the �rst stage of a speech processing algorithm one is
endeavored to decrease the considerable redundancy in the
locally stationary parts of the speech signal via linear trans-
forms [1]. The theoretic optimum is the Karhunen{Loeve
(KL) transform which, however, fails to satisfy indispens-
able practical side{constraints. The desirable properties of
a general purpose, �rst{stage speech transform are as fol-
lows:

Time{Frequency Parametrization. The double index
of the transform domain should correspond to an appropri-
ately normalized time scale and frequency scale. This con-
straint assures modularity with existing higher level speech
processing algorithms.

Invertibility. For speech coding or speech enhancement
invertibility is of obvious relevance. In applications such as
speech recognition (where the transform is used as a front{
end to produce a feature vector) invertibility guarantees no
loss of information.

E�ciency. A �rst{stage transform should leave most of
the available computational power for the higher level pro-
cessing.
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2. STFT AND GABOR EXPANSION

STFT. The short{time Fourier transform (STFT) and its
squared magnitude, the spectrogram, are the fundamental
tools for a TF analysis of speech signals. The STFT is
de�ned as [2, 3] (the range of all integrals is the real line)

Vgf(x; �) :=

Z
f(y)g(y� x)e�j2�y�dy;

where f is the signal, g is the analysis window, x is time, �
is frequency and the bar denotes complex conjugation. (We
assume that f; g 2 L

2(R).)

Gabor Representation. Mapping a one{dimensional sig-
nal onto the two{dimensional TF plane introduces consid-
erable redundancy. While redundancy is appropriate for
visualization, it is generally undesired in "black box" signal
processing. The natural way to reduce this redundancy is
by sampling the STFT on a separable lattice (a, b denote
the time/frequency periods):

Tgf [k; l] := Vgf(ka; lb):

This leads to a linear, discrete TF signal representation
Tgf [k; l] known as Gabor representation [4, 3].

Reconstruction. From a modern signal decomposition
point of view, the Gabor representation can be interpreted
as the coe�cients of a nonorthogonal expansion. The set
of functions fg(x � ak)ej2�blxgk;l2Zestablishes a coherent
frame which admits a (numerically stable and e�cient) re-
construction via a so{called dual frame [3]. Indeed, in his
classical work [4], Gabor takes a signal synthesis point of
view, postulating a signal expansion of the following form

f(x) =
X
k2Z

X
l2Z

Tgf [k; l]h(x� ka)ej2�x lb;

where the function h can be interpreted as synthesis window
One can view the traditional Gabor frame as a rectan-

gular tiling of the time-frequency plane. The reconstruction
is numerically stable for su�ciently high density, i.e.,

ab < 1; (1)

this requirement also implies existence of a "nice" synthesis
window h given a usual Gaussian{like analysis window g.



3. UNDERSPREAD ENVIRONMENTS

Modern speech processing is predominantly based on the
concept of stationary processes. The profound statistical
theory is tied to the true behavior of speech signals via a so{
called quasistationarity assumption. The resulting choice
of a window is largely due to heuristic considerations. A
mathematically precise de�nition of quasistationarity can
be based on the theory of underspread environments [5, 6].

Spreading Function. The second order theory of nonsta-
tionary random processes and the nonparametric theory of
linear time{varying (LTV) systems can be characterized by
linear integral operators acting as:

Hf(x) =

Z
kH(x; y)f(y)dy;

where the kernel k corresponds either to the impulse re-
sponse of an LTV system or to the covariance function of
a random process. In order to classify the "degree of non-
stationarity" of such environments, it is advantageous to
switch to a di�erent I-O-relation :

Hf(x) =

Z Z
SH(�; �)f(x� �)ej2��xd�d�;

i.e., the output signal Hf is formulated as a superposition
of TF{shifted versions of the input signal. The (generally
complex valued) weight function SH is in one{to{one cor-
respondence to the kernel:

SH(�; �) =

Z
kH(x; x� �)e�j2��xdx: (2)

We shall refer to SH as spreading function of the opera-
tor H, which is the system theoretic terminology. In the
context of random processes, where we have covariance op-
erators de�ned by a covariance kernel, the spreading func-
tion can be interpreted as a TF correlation function (more
precisely, an expected ambiguity function). We henceforth
assume that all involved processes are zero{mean such that
the correlation function is equivalent to the covariance func-
tion de�ned as (R)(x; y) :=Eff(x)f(y)g (E denotes the ex-
pectation operator and f is a nonstationary process).

A fundamental classi�cation of nonstationary environ-
ments can be formulated via singular support constraints
on the spreading function. Convolution operators (corre-
sponding to a wide{sense stationary process or to a linear
time{invariant system) do not introduce frequency shifts,
while multiplication operators (corresponding to nonsta-
tionary white noise or to modulation systems) do not in-
troduce time{shifts, thus their spreading function is con-
centrated on one axis of the (�; �){plane, see Figure 3.

Underspread Condition. In view of the support con-
straints of SH for stationary and "totally nonstationary"
(multiplicative) environments, a canonical de�nition of qua-
sistationarity is given by restricting SH to a centered rect-
angle of the (�; �){plane:

suppSH � [��0; �0]� [��0; �0];

where �H = 4�0�0 is called total spread and underspread

environments are de�ned by �H � 1.
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Figure 1: Support of SH(�; �): (a) convolution, (b) multi-
plication, (c) identity, (d) underspread operator (�0�0 � 1)

Fundamental Property. Underspread operators satisfy a
number of interesting mathematical properties. Generally
speaking, the total spread �H is a fundamental condition
number for the applicability of (nonparametric) TF{domain
representations, while the spreading ratio �0

�0
is the criti-

cal design parameter for estimators or identi�cation proce-
dures. Of particular relevance for the present context is the
existence of approximate eigenfunctions and eigenvalues in
the following sense. Consider a pulse{like prototype func-
tion g whose duration is adapted to the spreading constraint
by an intuitive appealing matching rule

Tg

Fg
=

�0

�0
(3)

where Tg, Fg are the duration/bandwidth of g de�ned via
normalized second{order moments. Then, one can show
that any TF{shifted version of g is an approximate eigen-
function of H, and the associated almost{eigenvalue is de-
termined by the transfer function of H at the very same TF
location:

Hg�;� = ZH(�; �)g�;� +O(�2H) (4)

where g�;� denotes the TF{shifted version of g, i.e., g�;�(x)
:=g(x� � )ej2�x� and ZH is Zadeh's time{varying transfer
function (Kohn{Nirenberg symbol) of H,

ZH(�; �) :=

Z
kH(�; � � y)e�j2��ydy;

and O(�2H) is a small (L2{sense) error term. Note that this
property corresponds to the well{known fact that complex
sinusoids g�(x) = e

�j2��x are (generalized) eigenfunctions
of convolution operators, Hg� = �Z(�)g� where the gener-
alized eigenvalue distribution �Z(�) is given by the Fourier
transform of the convolution kernel (transfer function in
case of LTI systems or power spectrum in case of station-
ary processes). For the present context (where H stands
for the covariance of the speech signal as a nonstation-
ary random process) approximate eigenfunction means just
that g�;� is close to a KL basis function for abitrary (�; �).
Hence, it remains to sample the matched continuous frame
fg�;�g(�;�)2R�Ron a properly chosen subgroup in order to
obtain a coherent, KL{like discrete family of functions [6].
Before proceeding in this direction we have to determine
the underspread support of the speech signal's covariance.



4. IDENTIFICATION OF THE VOCAL TRACT

Following the classical speech production model [7] we as-
sume periodic excitation of the vocal tract by a glottal pulse
train (during vowel sounds):

pa(x) = a

X
k2Z

�(x� ka);

where a is the pitch period. More precisely, we merge the
glottis pulse with the impulse response of the vocal tract
to an overall time{varying impulse response. (We are not
really interested to identify the vocal tract per se, rather
we want to characterize the TF correlation of the speech
signal in a reproducible way.) In contrast to the usual qua-
sistationarity assumption we explicitly consider the vocal
tract as a linear time{varying system. One may hope that
this system is indeed approximately underspread, because
during vowel sounds the velocity of the moving parts of the
vocal tract is certainly much smaller than the velocity of
the propagating acoustic waves. However, irrespective of
the physical relevance, it is clear that to any given signal f
one can assign an LTV system H such that

f = Hpa:

It can be shown that direct, unbiased estimates of SH
can be obtained via the Zak transform of Hpa:

ZHpa(�; �) =
X
k2Z

X
l2Z

SH

�
� � ka; � �

l

a

�
e
j2�(��k=a)�

;

with the Zak transform de�ned as [8]

Zf(�; �) :=
X
k2Z

f(t+ ka)e�j2�k�a: (5)

While preparing this article, we became aware of [9] where
the Zak transform has already been suggested for speech
analysis (motivated by the theory of cyclostationary pro-
cesses).

Assuming noise{free observation of Hpa one has the fol-
lowing "anti{aliasing" condition for the Zak{based estimate
of SH : 2�0 � a; 2�0 �

1

a
. For general underspread systems

one has considerable freedom in the selection of a. In the
speci�c context of speech, we have to assume that the im-
pulse response of the vocal tract does not exceed the pitch
period.

In practice, the exact knowledge of the excitation pulse
is certainly unrealistic. Detailed analysis shows that a time{
shift of pa results in a time shift of the magnitude of ZHpa,
while the complex phase is changed in a "twisted" way.
But this ambiguity is not really a problem, because we are
content with an incomplete characterization of the vocal
tract. One can show that the identi�cation of the compos-
ite operator HH

� is invariant with respect to an (unknown)
time{shift of pa, hence jSHH� j characterizes the spreading
behavior of the vocal tract in a reproducible way. Note,
moreover, that according to the innovations system inter-
pretation (switching to white noise excitation) the spread-
ing function of HH

� is the TF{correlation function (ex-
pected ambiguity function) of the speech signal [10].

In summary, we suggest the following estimation proce-
dure for the TF correlation of the speech signal f :

1. Compute the pitch{adapted Zak transform of f (see
(5)).

2. Apply the inversion formula of the spreading function
to obtain the kernel of H

kH(x; y) =
R
Zf(x� y; �)ej2��xd�:

3. Build the composite operator HH
� according to

kHH�(x; y) =
R
kH(x; z)kH(y; z)dz:

4. Compute the spreading function of HH
� (see (2)).

In the following numerical experiment we compare the
Zak based estimate of the speech signal's TF correlation
with an averaged ambiguity function estimate as proposed
in [11]. The speech sample was 0.250msec of voiced speech,
sampled at 8Khz. The pitch period was estimated from
a standard autocorrelation estimate. The signal was pre{
emphasized. Figure 2 shows the two di�erent TF correla-
tion estimates. Averaging the ambiguity functions of suc-
cessive blocks neglects the quasicyclostationarity of speech,
which leads to a temporal broadening of the TF correlation
estimate. Hence, we prefer the Zak{based estimate.
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Figure 2: TF correlation estimates of voiced speech: (a)
Via Zak{transform, (b) Via averaged ambiguity functions

5. NONSEPARABLE GABOR FRAMES

Sampling reduces the inherent redundancy of the STFT in
an obvious, deterministic way. However, since we model
the signal as a realization of a nonstationary process, we
require that the chosen STFT samples are optimally un-
correlated. The covariance of the STFT Vgf is basically a
four{dimensional function:

rV (x; �; �; �) = E
n
Vgf(x; �)Vgf(x� �; � � �)

o
:

However, for intuitive purposes it is su�cient to consider
the following "TF{stationary" upper bound of the STFT
correlation:

jrV (x; �; �; �)j � (jSRj � jSg
g j)(�; �): (6)

Here, SR is the signal process' TF correlation, and Sg
g is
the ambiguity function of the analysis window (the asterisk
denotes double convolution). We emphasize that incom-
plete a priori knowledge in the form of jSRj already sug-
gests the use of a TF{coherent frame, because no absolute
TF localization is distinguished in a statistical sense. TF{
coherence is obtained by sampling the STFT on a lattice



(subgroup of R � R) which need not be separable [12]. A
general lattice can be de�ned by a 2 � 2 sampling matrix
(u;v) (see Fig.3(b)), the Gabor coe�cients are then given
by

Tgf [k; l] = Vgf(ku1 + lv1; ku2 + lv2):

In view of (6) it may be expected that knowledge of jSRj de-
termines the optimum grid and the optimum window. For
underspread processes it can be shown that this is indeed
true. Recall that optimality means that the covariance of
the Gabor coe�cients, EfTgf [k; l]Tgf [m; n]g is close to di-
agonal. The optimization theory largely parallels that pre-
sented for the separable case in [11, 5]. Invertibility is a
key side{constraint, because reducing either the sampling
density or the norm of the window, reduces the o�{diagonal
contributions in a trivial way that violates invertibility. The
density of a general lattice is given by the inverse determi-
nant of the generating matrix, hence, the side constraints
for minimizing the Gabor coe�cient correlation are: (i)
det(u;v) < 1, (ii) kgk = 1. The reconstruction itself is
structurally equivalent to the analysis and can be realized
via FFT methods:

f(x) =
X
k2Z

X
l2Z

Tgf [k; l]h(x� ku1 � lv1)e
j2�x (ku2+lv2)

;

where h is the synthesis window.
The joint optimization of lattice and window is a fairly

complicated problem which seems to be analytically in-
tractable. However, a successive optimization leads to closed
form analysis when we restrict ourselves to elliptical sym-
metry of jSRj. (Recall that our experiments suggest that
the support of jSRj for speech signals is closer to an ellipse
than to a rectangle.) Due to lack of space, we cannot go
into more mathematical details, rather we emphasize that
both orders of optimization suggest the use of nonseparable
lattices for speech signals by the following arguments:

From window to lattice. It can be shown [5], that the
statistically optimum STFT window for an underspread
process with elliptical spreading constraint is the Gaussian
window, adapted according to (3). Numerical experiments
(and an intuitive sphere packing consideration) suggest that
the nonseparable grid obtains better frame bounds given the
Gaussian window and �xed density [12].

From lattice to window. A window independentmatched
grid can be obtained by the theory of underspread opera-
tors [5], for elliptical symmetry of the spreading constraint
it is hexagonal.

Numerical Experiment. As an illustrative example we
consider a simple numerical experiment based on 1sec speech
sampled at 8kHz and pre{emphasized. We computed a
Frobenius{type o�{diagonal norm of the Gabor coe�cient
block covariance for various Gabor frame setups. The nu-
merical results are listed in Table 1. Note that this average
goes over 1sec speech containing both voiced and unvoiced
parts.
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