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ABSTRACT

This paper describes a scheme to adapt the parameters

of a tied-mixture, hidden Markov model, on-line hand-

writing recognition system to improve performance on

new writers' handwriting. The means and variances

of the distributions are adapted using the Maximum

Likelihood Linear Regression technique [1,2]. Experi-

ments are performed with a number of new writers in

both supervised and unsupervised modes. Adaptation

on data quantities as small as 5 words is found to re-

sult in models with 6% lower error rate than the writer

independent model.

1. INTRODUCTION

In on-line handwriting recognition, the goal is to rec-

ognize what has been written with an electronic stylus.

The stylus returns a sequence of coordinates, record-

ing the trajectory of the pen while in contact with a

tablet surface. Because individual handwriting varies

tremendously from person to person, a system trained

to recognize one person's writing will generally perform

poorly when another person writes, and it is di�cult to

make a system that will perform well on every person's

handwriting.

It has been found that relatively small quantities of

data (a few hundred words [4]) can be used to train

a model to one writer's style, but in many situations

it is impractical to collect even this amount data from

a user, and it is rarely practical to obtain data with

a correct transcription as would be ideal. However, it

is observed that, examining just a few words of a per-

son's handwriting we can immediately get a good idea

of their writing style and know what shapes they use

for most of their letters. This means that it might be

possible to use just a few words of data to character-

ize a person's writing and to adapt a general model to

perform better for this individual.

A number of techniques involving transformations or

maximuma posteriori statistics have been proposed for

adapting hidden Markov model speech recognition sys-

tems to an individual speaker, by changing the para-

meters of a speaker independent model which has been

trained on a large pool of speakers. In this paper we

investigate one method which has performed well in

speech tasks. Since our aim is to achieve adaptation

with small quantities of data, we use a transformation

based approach.

The handwriting recognition model used for these

experiments is a writer independent system trained on

data from over 100 writers. The system is a contin-

uous density Gaussian mixture hidden Markov model

system, with the distribution for each state being a

mixture from a common pool of 750 Gaussians with

diagonal covariance matrices [3]. The words written

on the system are represented by a sequence of vec-

tors called frames each of which encodes the shape of

a short section of pen trajectory.

2. MAXIMUM LIKELIHOOD LINEAR

REGRESSION

The frames of handwritten data for an individual writer

will have a di�erent probability distribution to the

frames derived from data collected from a large pool

of writers. Some shapes will occur far more frequently

for the writer, some shapes will never occur, and new

shapes, not seen in the writing of the pool of writers,

may be observed. Maximum likelihood linear regres-

sion (MLLR [2]) seeks to apply a transformation to

the model to achieve the maximum likelihood match

between the probability distribution of a Writer In-

dependent model, and the frames of data seen in a

small adaptation sample of a new writer's handwriting.

There is no guarantee that any limited class of trans-

forms will perform such a mapping well, but a linear

transformation is applied as an approximation. When

more data are available, di�erent transforms can be es-

timated for di�erent areas of the feature space resulting

in a piecewise-linear transformation that gives a better

approximation to the writer's distribution; goodness-



of-�t being judged based on the likelihood of the adap-

tation data given the new model parameters.

To adapt the mean, �, of a Gaussian distribution, a

linear transform, W is applied:

�̂ = W� (1)

The transform is estimated as the maximum likelihood

transform using the following auxiliary equation:
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where theK are constants not depending on the means.

The derivation of the transformation is given in detail

elsewhere [2].

A separate transform can also be estimated for the

variances [1]. Since the model used here has diagonal

covariance matrices, each dimension's variance is scaled

separately:
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Where P� (mjM;o) is the probability of Gaussian m at

time � , given the alignment of the adaptation sequence

o with model M and L(ojM) is the likelihood of the

observation sequence given the model. This results in

a re-estimation equation:
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The variance adaptation above is guaranteed to in-

crease the likelihood only when the means are held con-

stant. Thus the means and the variances need to be

adapted separately, with realignment taking place in

between. This can either be done by alternating means

and variance adaptation, or by adapting the means for

several iterations and then adapting the variances. In

this paper both techniques have been tried.

2.1. Multiple transforms

The transforms can be estimated on pools of Gaus-

sians | from a single transform on the whole set to a

separate transform for each Gaussian, which is equiva-

lent to the standard re-estimation formulae. To decide

which Gaussians to transform together, they are clus-

tered together in a binary tree, built top-down. The

pool of 750 Gaussians is iteratively bisected until each

leaf represents a single Gaussian, the other nodes repre-

sent clusters of the Gaussians. With a particular adap-

tation dataset, the frames are aligned to the Gaussians

in the pool, and the numbers of observations of each

Gaussian, and of each cluster, are calculated. A thresh-

old is chosen empirically, as the minimum number of

observations required to estimate a transform.

Two methods of choosing which Gaussians should

be transformed together have been tested, using the

following criteria:

� Descend the tree until a leaf is reached, or ei-

ther child has insu�cient data to estimate a trans-

form. Estimate a transform for each of the nodes

so reached, and apply it to all the Gaussians in

that node.

� For each Gaussian, ascend the tree until a node

with enough data is reached. Apply the transfor-

mation for that node to the Gaussian.

The di�erence between the two methods can be seen in

�gure 1. If a threshold of 100 observations is used, using

the �rst method, a transform will be estimated using

all 200 observations under node a, and applied to all

Gaussians in node a. Using the second method, there

are enough observations under node b, so a transform

is based on these 150 observations and applied to all

the Gaussians under node b. A separate transform

is estimated based on all the 200 observations under

node a, but only applied to those Gaussians under node

c. In practice the latter method has been found to

perform better than the former, though in both cases

the thresholds need to be chosen carefully to achieve

the best performance, and the thresholds are di�erent

for the two methods.

b

200 a

c150 50

Figure 1: Part of a tree showing two nodes b, c and

their common parent a, with the observation counts.



3. EXPERIMENTS

The experiments described below all use the same

tied-mixture, writer independent hidden Markov model

recognition system. Twelve writers with a variety of

writing styles are tested. For each writer, up to 200

words of adaptation data are available, and around 500

words of test data are used to evaluate the system per-

formance. Testing is carried out with a 23,000 word

dictionary and less than one percent of the test set is

out of vocabulary.

The initial performance of the writer-independent

model varies from writer to writer. The average word

error rate is 28.7%, but several writers have around

10% errors, and one has 60% errors. Experimental re-

sults are shown averaged across all the writers. For

a given quantity of data, adaptation performance is

found to vary depending on the actual training exam-

ples used, so the results presented here are averaged

across �ve di�erent samples for each experiment. Re-

sults are shown for adaptation sets containing 5 to 200

words, though the length and legibility of the words

varies considerably.

3.1. Supervised vs. unsupervised

Most of the experiments have been conducted with cor-

rectly labelled adaptation data, but in a practical ap-

plication it would be useful to be able to carry out

adaptation when the only data available are not la-

belled. (Since labelled data can only be gathered by

the labour-intensive operations of writing out stimuli

as training data or correcting machine transcriptions).

Since the labels of the data are unknown, they can only

be inferred using the recognition system. To adapt in

this unsupervised mode, the writer-independent recog-

nizer is run on the training data and its answers are

used as the labels for adaptation. The labelling is done

either with a dictionary or with a character n-gram

model. Though the word accuracy of the n-grammodel

is lower, the character accuracy (estimated using string

alignment) is about the same as when using the dictio-

nary, and allows better handling of training sets with

many words not in the vocabulary.

4. RESULTS AND CONCLUSIONS

Figure 2 shows the e�ect of varying the number of it-

erations of alignment and adaptation. The adaptation

improves the model so that successive iterations give

better alignments, resulting in better adaptation. It

can be seen that more iterations give better perfor-

mance, with diminishing returns.
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Figure 2: This graph shows the e�ect of adapting for

one or more iterations and compares results with the

error rate obtained when using the writer independent

model without adaptation (the horizontal line).

Figure 3 shows the e�ect of adapting the variances as

well as the distribution means. Adapting the variances

outperforms means-only adaptation only for some writ-

ers, and when there is enough data available. For the

adaptation set sizes examined here, it does not give an

improvement on average, using either method.
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Figure 3: This graph shows the di�erence in perfor-

mance when adapting means only (four iterations) or

means and variances (a �fth iteration for adapting the

variances only, or eight iterations alternating means

and variances). The unadapted model performance is

also shown.

Figure 4 shows three curves for adaptation with the



correct labels and with labels generated by the rec-

ognizer with and without a dictionary. Unsupervised

adaptation is a little worse than supervised adapta-

tion but still improves performance signi�cantly Using

a non-word model instead of a dictionary is found to

increase the accuracy.
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Figure 4: A comparison of errors obtained with super-

vised (using correctly labelled data) or unsupervised

(data labelled using a recognizer with or without a

dictionary) adaptation. The unadapted model perfor-

mance is also shown.

5. CONCLUSIONS

It has been shown that the MLLR framework can be

successfully applied to a tied-mixture HMM used for

handwriting recognition. This adaptation technique

gives signi�cantly improved performance even when

very small amounts of unlabelled training data are

available and the performance increase becomes greater

when more data are available or the data are well-

labelled. A 9% reduction in error rate is achieved on

only twenty words of training data (�gure 2).

It is seen that multiple iterations of re-alignment and

adaptation improve the performance. So far, adapta-

tion of variances has given no further improvement in

recognition accuracy with the data quantities being ex-

amined, though further adjustment of the thresholds

for multiple transforms may yield such an improve-

ment, and for larger quantities of data this is expected.
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