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ABSTRACT

In this paper we report on advances regarding our approach
to porting an automatic speech recognition system to a new
target task. In case there is not enough acoustic data avail-
able to allow for thorough estimation of HMM parameters it
is impossible to train an appropriate model. The basic idea
to overcome this problem is to create a task independent seed
model that can cope with all tasks equally well. However,
the performance of such generalist model is of course lower
than the performance of task dependent models (if these were
available). So, the seed model is gradually enhanced by us-
ing its own recognition results for incremental online task
adaptation. Here, we use a multilingual romanic/germanic
seed model for a slavic target task. In tests on Slovene digits
multilingual modeling yields the best recognition accuracy
compared to other language dependent models. Applying
unsupervised online task adaptation we observe a remark-
able boost of recognition performance.

1. INTRODUCTION

The research described in this paper is part of our on-
going e�orts towards exible automatic speech recognition
(ASR) systems that o�er a maximum recognition perfor-
mance for changing channels, speakers, and tasks (including
languages).
It is well{known that ASR systems that have been designed
for general use are being outperformed during a special ap-
plication by a specialist system that has been designed for
this one assignment only (e.g. [1]). A problem occurs when
training of specialist models is impossible either

� because the �nal task is unknown during training time
or

� because there is not enough task dependent data avail-
able for complete re{training.

This problem can be solved by creating a phonetically bal-
anced Hidden{Markov{Model that can cope initially with
all possible recognition tasks and then adapt it automati-
cally online to a speci�c task given by the �nal user in order
to improve the overall performance [2].

We introduce the new idea of adaptive online language trans-
fer: First we generate a language independent, phonetically
balanced multilinguist HMM from English, German, and
Spanish [3]. Then this model is used as initial base for an
examplary task of Slovene digits. Using task adaptation,
the system learns gradually from the occurring utterances
and updates its own HMM parameters. This o�ers a way to
transfer a system to a new language if no data is available for
the new target task/language at system development time.

The paper is structured as follows: In section 2 we describe
the theoretic background of general task adaptation and dis-
cuss issues relevant to the �nal implementation. Then we
focus on the procedures that are involved with building mul-
tilingual models that constitute the seed HMMs for adap-
tation to the �nal task. Consequently, we give next a brief
introduction to the steps that are necessary for multilingual
adaptation itself. In section 5 we �rst demonstrate the im-
provements that our task adaptation techniques yield for the
case of changing dictionaries for a German recognizer. Us-
ing the knowledge derived from these experiments we �nally
carry out multilingual adaptation.

2. ONLINE TASK ADAPTATION

2.1. Adaptation Formulae

We assume that the relevant di�erences between tasks af-
fect mainly the parameters of the HMM probability density
functions (pdfs), or more speci�cally the location of their
means in acoustic space. Due to simplicity we are going to
discuss the formulae for 1{dimensional space. The practical
relevant case of higher dimensions can be derived easily from
the given formulations.
A Bayesian update of the mean � of a normal density is
achieved according to [4] by
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new observations. �0 and �20 are mean and variance of the
previously trained task independent model, whereas �2 is the
variance of the new task dependent adaptation data. Elim-



inating �0 by counting in the explicit formulation of �n�1
results in a recursive updating formula:
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Some algebra yields a new formulation of (1):
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where we de�ne gn(�) as follows:

gn(k) =

�
1 if k < 1Qk�1

j=0
(1� �n�j) if k � 1.

(5)

Bayesian Adaptation
Now, we want to examine the contribution of past observa-
tion vectors to an update [5]. For this reason we derive a
weighting function that calculates the weight of every past
observation. Imagine we have just �nished the nth adapta-
tion pass for one speci�c mean. From (4) we can easily de-
termine by inspection the weight of the kth (starting with 0)
past observation:

wn(k) =

�
�n�kgn(k) if 0 � k � n� 1
0 else.

(6)

In the same way the weight for the initial seed mean �0
can be read as gn(n). As an example we determine now
the weights after 30 adaptation passes. In our recognition
system we do not model variances explicitely and replace
them with a grand total variance instead. Consequently we

set �2

�2
0

= 1. This yields constant values of 1

31
(including the

weight for �0), i.e. all incoming new observations and the
initial seed mean are all weighted equally (�gure 1). This
means that for a constant ratio of variances no forgetting of
past observations is possible.
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Figure 1: Weighting function for n = 30 Bayesian adap-
tation passes.

Heuristic Adaptation
However, for some applications such as varying adaptation
conditions we would like to introduce the possibility of for-
getting so that learning anew is feasible. This is impor-
tant in the case of permanently changing tasks. In order

to achieve this goal we simplify (3) to � = const. We
have tested this case extensively in [2] where we determined
heuristically the �s that result in the best adaptation per-
formance. The weighting function (6) reduces to �(1� �)k

with 0 � k � n � 1. Then the weight of the initial value
�0 equals (1� �)n. It is important to note that a constant
adaptation rate � results in an exponentially attenuated in-
uence of past observation vectors (�gure 2), i.e. learning
anew is possible.
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Figure 2: Weighting function for n = 30 heuristic adap-
tation passes and � = 0:1.

2.2. Task Adaptation vs. Speaker Adap-

tation

We address the problem of task mismatch between training
and testing processes. For a more thorough discussion please
refer to [2]. Obviously above adaptation formulae merge pre-
vious knowledge (means of the pdfs) with new incoming ob-
servations (feature vectors) without taking the real adapta-
tion purpose into account. The adaptation subject has to be
given implicitely by making sure the new observations are
generated ful�lling a speci�c criterion. Therefore it might
be more appropriate to talk about a hidden adaptation or
a topic speci�c reestimation. We have chosen the expression
Task Adaptation in analogy to the well{known Speaker Adap-
tation, where very successful algorithms (e.g. [1]) are based
on speaker speci�c reestimation. Other work on speaker
adaption that is algorithmically related to our adaptation
technique can be found e.g. in [6, 7].
The main di�erences between training data and the data of a
new task is given by the new contexts that occur through new
combinations of phonemes. So it might be straightforward
to adapt only the context dependent states of our phoneme
based 3{state HMMs. Although we can show in experiments
that this yields already a considerable improvement, includ-
ing the middle state in the updating process outperforms
the �rst suggestion. The e�ect is mainly due to the fact that
contexts (especially in small vocabulary systems) are spread
over several phonemes and cannot be modeled appropriately
by means of a diphone system.
In contrast to speaker adaptation we are not looking for a
uniform shift of pdf{clusters in acoustic space. We would
rather like to �nd a new arrangement of clusters that is given



by the new task. Therefore we generally do not tie mixtures
for the adaptation process.

2.3. Adaptation Strategy

The basic idea is to take an unbiased monophone seed model
as a baseline and use its phonemic inventory for the working
model when the recognition vocabulary changes. Whenever
a new task that was previously unknown is being set up a di-
phone working model is automatically created corresponding
to the new dictionary. The needed context dependent states
are now copied from the corresponding context independent
seed model. The working model is now subjected to task
adaptation during the recognition process. Note that this
adaptation has a long term memory, i.e. the acoustic models
are always gradually adapted to the current application.
Using the Viterbi algorithm each observation vector ~xt,
t = 1; 2; :::T can be mapped to a state �it of the best model i
after recognition. To model the state emission probabilities
we are using multivariate Laplacian distributions. Given a
mapping between observation vector and state we determine
now the mean ~�i that is nearest to ~xt using the city block dis-
tance measure. This nearest mean is now updated after each
utterance according to (2). Depending on how fast the new
task is going to change we use either Bayesian or heuristic
adaptation.

3. MULTILINGUAL PHONEME

MODELING

Cross language transfer of speech technology requires huge
amounts of speech data to train a recognizer in the new lan-
guage. To avoid this problem we exploit in our approach the
acoustic{phonetic similarities of sounds across languages. In
previous work [3] we have developed multilingual phoneme
models based on Hidden-Markov-Modeling for a variety of
languages. The rationale behind this is to create a balanced
non{specialist HMM seed model that uni�es the properties
of several languages. This model is then used as an improved
starting model for adaptation/transfer into any target lan-
guage, so that convergence is being sped up and overall per-
formance is getting better.

Creating Multilingual Phoneme Models (MLPMs)
We model acoustic{phonetic similar phonemes across lan-
guages as multilingual phonemes. The MLPMs are trained
on the OGI ML-TS corpus for the three languages German,
Amercian English and American Spanish [8]. Each phoneme
model consists of a 3{state continuous density HMM. The
states are modeled by Laplacian mixture densities where the
number of pdfs depends on the number of occurences in the
training material. The 125 language dependent phoneme
models are mapped to a universal phoneme set using a log
likelihood based distance measure. For the languages which
are included in the training corpus the mixture weights are
estimated for each language separately whereas the pdfs are
tied across the languages. Hence, there are pdfs which are

used in all of the three languages and pdfs used only in a
single language. For the MLPMs which are used in a new
target language the mixture weights are averaged across the
languages. Finally, the multilingual inventory constists of 72
context independent phoneme models. The MLPMs provide
broad acoustic{phonetic models for a variety of languages [3].

4. ADAPTIVE ONLINE LANGUAGE

TRANSFER

The goal of using multilingual phoneme models is to use them
as a base for improved transfer to a new language. Here we
use them as seed models for adaptation to a slavic language
(Slovene) that has not been included in the multilingual in-
ventory. Although all of the IPA phonemes for Slovene are
included in the MLPMs one has to adapt and optimize the
parameters for Slovene.
We will show that our MLPMs speed up the cross lan-
guage transfer of speech technology. Other related strategies
(e.g. [9, 10]) work o�ine, require an advance training set,
and do not make use of unsupervised acoustic adaptation.

Mapping from Multilingual to Slovene Phonemes
In this work the Slovene phoneme set in the acoustic dic-
tionary used for the digit task is mapped manually to the
MLPMs by phonetic knowledge rather than by a statistical
method because there is currently no labeled speech data
available. After the mapping we obtain 18 Slovene phoneme
models with 2002 pdfs.

5. EXPERIMENTS AND RESULTS

First we evaluate the inuence of the described possibilities
to carry out task adaptation towards a known task. From
the knowledge derived from these experiments we adopt the
best parameters for optimal multilingual adaptation. All
experiments are carried out with continuous density HMMs
and 8 kHz telephone data is being used exclusively.

5.1. Experiments on Task Adaptation

For these experiments we �rst trained a monophone seed
model that covers general German task{independently. To
carry out this training we used the phonetically bal-
anced sentences from the German part of the SpeechDat{1
database [11]. As target we use a German isolated word task
with a vocabulary perplexity of 62. The task mismatch is
given by the new recognition vocabulary. It is always ensured
that the utterances of the adaptation set have random order
so that no implicit speaker adaptation is possible. Adap-
tation and test sets are both recorded on identical channel
characteristics. Regarding the heuristic adaptation we found
that � = 0:1 yields a good adaptation performance [2]. Re-
sults are shown in �gure 3. The hypothesis that the heuristic
adaptation yields better results than the Bayesian adapta-
tion during the �rst adaptation steps is con�rmed exper-
imentally. However, Bayesian adpatation outperforms the
heuristic one as more adaptation data become available.
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Figure 3: Word error rates corresponding to number of
adaptation utterances; � = 0.1 is used for both heuristic
adaptation set{ups.

5.2. Experiments on Adaptive Language

Transfer

We test our multilingual approach on a Slovene digit task.
The acoustic lexicon contains 12 Slovene digits. Overall we
have 646 isolated words, uttered by 54 speakers, for adapta-
tion.
In order to measure the advances achieved by multilingual
modeling we also create purely language dependent German,
American English, and American Spanish models that we use
also as seed for adaptation to Slovene modeling.
The recognition results are presented in table 1. It can be
seen that the mapped HMMs yield a modest recognition
performance with the multilingual HMM outperforming the
others. It is important to keep in mind that these are boot-
strapping recognition rates. Language and task dependent
training { if possible { would yield better results, of course.
One has to mention that from a phonetical point of view Ger-
man already o�ers the phoneme inventory that is closest to
Slovene when compared to English and Spanish. Therefore
the gap of performance between English or Spanish model-
ing and multilingual modeling is bigger.
Since we are dealing with a long{term process we are using
Bayesian adaptation here. In all cases in{service task adap-
tation causes a clearly noticeable boost in performance, with
the best result achieved through multilingual HMM model-
ing.

6. CONCLUSION

We reported on recent advances in the �elds of task adap-
tation and multilingual phoneme modeling. In a novel ap-
proach of combining these two technologies we could show
that in{service bootstrapping of an automatic speech recog-

TASK ADAPTATION OFF ON

German HMM 73.4% 83.4%

American English HMM 62.7% 69.0%
American Spanish HMM 65.9% 76.6%
Multilingual HMM 76.5% 85.0%

Table 1: Recognition Performance on the Slovene digits
task.

nition system to a new language is possible without prior
training data. The proposed strategy outperforms conven-
tional, non{adaptive HMM modeling.
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