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ABSTRACT

Several adaptation approaches have been proposed in an
e�ort to improve the speech recognition performance in mis-
matched conditions. However, the application of these ap-
proaches had been mostly constrained to the speaker or
channel adaptation tasks. In this paper, we �rst inves-
tigate the e�ect of mismatched dialects between training
and testing speakers in an Automatic Speech Recognition
(ASR) system. We �nd that a mismatch in dialects signif-
icantly inuences the recognition accuracy. Consequently,
we apply several adaptation approaches to develop a di-
alect-speci�c recognition system using a dialect-dependent
system trained on a di�erent dialect and a small number of
training sentences from the target dialect. We show that
adaptation improves recognition performance dramatically
with small amounts of training sentences. We further show
that, although the recognition performance of traditionally
trained systems highly degrades as we decrease the number
of training speakers, the performance of adapted systems is
not inuenced so much.

1. INTRODUCTION

A wide variety of techniques have been proposed to per-
form large vocabulary, continuous speech recognition. How-
ever, the recognition accuracy of these systems has proven
to be highly related to the correlation of the training and
testing conditions. Performance degrades dramatically if a
mismatch exists between these conditions, such as di�erent
channel, accent or speaker's voice characteristics.

Several speaker adaptation techniques have been recently
proposed to improve the performance and robustness of
speech recognition systems. These techniques include trans-
formation based adaptation in the feature or the model
space [1, 2, 3, 4], Bayesian adaptation [5, 6], or combined
approaches [7].

In this paper, we consider the dialect issue on a speaker-
independent (SI) speech recognition system. Based on the
Swedish language corpus collected by Telia, we investigate
the development of a Swedish multi-dialect SI speech recog-
nition system which will require only a small amount of
dialect-dependent data. This recognizer is part of a bidi-
rectional speech translation system between English and
Swedish that has been developed under the SRI-Telia Re-

search Spoken Language Translator project [8]. We �rst
investigate the e�ect of mismatched conditions in training
and testing, and we �nd that the recognition performance of
a speaker-independent system trained on a large amount of
training data from the Stockholm dialect decreases dramat-
ically when tested on speakers of another Swedish dialect,
namely from the Scania region.
To improve the performance of the SI system for speak-

ers of dialects for which minimal amounts of training data
are available, we use dialect adaptation techniques. We ap-
ply both maximum likelihood (ML) transformation based
approaches, as well as combined transformation-Bayesian
approaches, in an e�ort to minimize the e�ect of di�erent
dialects.

2. DIALECT ADAPTATION METHODS

The SI speech recognition system for a speci�c dialect is
modeled with continuous mixture-density hidden Markov
models (HMM's) that use a large number of Gaussian mix-
tures [9]. The component mixtures of each Gaussian code-
book (genone) are shared across clusters of HMM states,
and hence the observation densities of the vector process yt
have the form:

PSI(ytjst) =

N!X

i=1

p(!ijst)N(yt;mig; Sig);

where g is the genone index used by the HMM state st.
These models need large amounts of training data for ro-

bust estimation of their parameters. Since the amount of
available training data for some dialects of our database is
small, the development of dialect-speci�c SI models is not a
robust solution. Alternatively, an initial SI recognition sys-
tem trained on some seed dialects can be adapted to match a
speci�c target dialect, in which case the adapted system uti-
lizes knowledge obtained from the seed dialects. We choose
to apply algorithms that we have previously developed and
applied to the problem of speaker adaptation, since in our
problem there are consistent di�erences in the pronuncia-
tion between the di�erent dialects that we examine. The
adaptation process is performed by jointly transforming all
the Gaussians of each genone, and by combining transfor-
mation and Bayesian techniques. In the next two sections
we describe the adaptation methods that we examined in
this study.



2.1. Transformation based adaptation

In analogy with [1], we assume that for a given HMM state
st the target-dialect SI vector process [xt] can be calculated
by the corresponding process of the seed-dialect [yt] through
the linear transformation

xt = Agyt + bg: (1)

Therefore the observation densities of the dialect-adapted
(DA) models can be written:

PDA(xtjst) =

N!X

i=1

p(!ijst)N(xt;Agmig+bg ;AgSigA
t
g): (2)

In order to fully de�ne our problem the parameters
Ag; bg ; g = 1; : : : ;Ng have to be estimated. Ng denotes
the number of transformations for the whole set of genones.
The parameter estimation process is performed using the
EM algorithm [10]. In our experiments we consider two
variations of the generic transformation above. In the �rst
variation (method I), we assume the matrix Ag is diagonal
[1], and is applied to both the means and covariances of the
models, as in equation (2).

The second method (method II, [3, 2]) assumes that Ag
is a block diagonal matrix which transforms only the means
of the Gaussian distributions:

PDA(xtjst) =

N!X

i=1

p(!ijst)N(xt;Agmig + bg ; Sig): (3)

Each of the three blocks of this matrix performs a separate
transformation to every basic feature vector (cepstrum, and
its �rst and second derivatives). Since the transformation
is only applied to the means of the Gaussians, there is no
underlying transformation of the form (1) in the feature
space, as for method I. For the speaker adaptation problem,
it was shown in [2] that method II with a block diagonal
matrix signi�cantly outperformed both method II with a
full matrix and method I with a diagonal matrix.

2.2. Combined transformation and Bayesian ap-

proaches

Bayesian techniques use prior knowledge together with
the small amount of training data to adapt the system.
These techniques have several useful properties, such as
asymptotic convergence and text independence. However,
they su�er from slow adaptation rates. By combining the
Bayesian with the transformation based approach, we ex-
pect to achieve faster adaptation as well as better conver-
gence to the dialect-speci�c models as the number of train-
ing sentences increases. In order to implement the combined
approach, we �rst adapt the SI models to match the new
dialect using a transformation method. Then, these dialect
adapted models serve as prior knowledge for the Bayesian
adaptation step. For a more detailed description of how the
combination is performed, the reader is referred to [7].

3. EXPERIMENTS

The adaptation experiments were carried out using a multi-
dialect Swedish speech database collected by Telia. The
core of the database was recorded in Stockholm using more
than 100 speakers. Several other dialects are currently be-
ing recorded across Sweden. The corpus consists of subjects
reading various prompts organized in sections. The sections
include a set of phonetically balanced common sentences for
all the speakers, a set of sentences translated from the En-
glish Air Travel Information System (ATIS) domain, and a
set of newspaper sentences.

For our dialect adaptation experiments we used data from
the Stockholm and Scanian dialects, that were, respectively,
the seed and target dialects. The Scanian dialect was cho-
sen for the initial experiments because it is one of three that
are clearly di�erent from the Stockholm dialect. The main
di�erences between the dialects is that the long (tense) vow-
els become diphthongs in the Scanian dialect, and that the
usual supra-dental /r/-sound becomes uvular. In the Stock-
holm dialect, a combination of /r/ with one of the dental
consonants /n/, /d/, /t/, /s/ or /l/, results in supradental-
ization of these consonants and a deletion of the /r/. In the
Scanian dialect, since the /r/-sound is di�erent, this does
not happen. There are also prosodic di�erences.
In addition, the Scanian dialect can be divided into 4

distinct areas (subdialects), namely Malm�o, Helsingborg,
Trelleborg and Kristianstad. In our experiments, the train-
ing and test sets consist of sentences chosen equally from the
above subdialects in order to create a generic, subdialect-
independent system. There is a total of 40 speakers of the
Scanian dialect, both male and female, and each of them
recorded more than 40 sentences. We selected 8 of the
speakers (half of them male) to serve as testing data, and
the rest composed the adaptation/training data with a to-
tal of 3814 sentences. Experiments were carried out using
SRI's DECIPHERTM system [9]. The system's front-end
was con�gured to output 12 cepstral coe�cients, cepstral
energy and their �rst and second derivatives. The cepstral
features are computed with a fast Fourier transform (FFT)
�lterbank and subsequent cepstral-mean normalization on a
sentence basis is performed. We used genonic HMM's with
arbitrary degree of Gaussian sharing across di�erent HMM
states [9].

The SI continuous HMM system, which served as seed
models for our adaptation scheme, was trained on approx-
imately 21000 sentences of Stockholm dialect. The recog-
nizer is con�gured so that it runs in real time on a Sun Sparc
Ultra-1 workstation. The system's recognition performance
on an air travel information task similar to the English ATIS
one was benchmarked at a 8.9% word-error rate using a bi-
gram language model when tested on Stockholm speakers.
On the other hand, its performance degraded signi�cantly
when tested on the Scanian-dialect testing set, reaching a
word-error rate of 25.08%. The degradation in performance
was uniform across the various speakers in the test set (see
Table 1), suggesting that there may be consistent di�erences
across the two dialects. Hence, there is a great potential for
improvement through dialect adaptation.
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Figure 1. Dialect adaptation results for adaptation
methods I, II, their combination with Bayes and
standard ML training.

In the �rst set of experiments, we adapted the Stockholm-
dialect system using various amounts of adaptation data
from the training speakers of the Scanian dialect, and eval-
uated the performance of the adapted system to a sep-
arate set of testing speakers. This gives us a measure
of the dialect-adapted, speaker-independent performance,
since the adaptation and testing sets consist of di�erent
speakers. We also trained from scratch a Scania-dialect sys-
tem using standard ML training based on the same adap-
tation data (ML-trained system), in order to estimate the
adaptation bene�ts.
The results are summarized in Figure 1. We see that even

with the �rst simpli�ed algorithm, which does not take full
advantage of large amounts of training data, we get a sig-
ni�cant improvement in the performance. With as few as
198 sentences we get a 38% reduction and the word-error
rate drops to almost 15%. Method II produces even better
results, and the error rate for the same amount of training
sentences falls to approximately 13%. However, when com-
pared with the ML-trained system, we see that the trans-
formation adaptation methods outperform the standard ML
training only when a very small amount of training data is
used (i.e. less than 400). For larger amounts of training
data, the ML-trained system performs better, and this is
due to the bad asymptotic properties of the transformation
adaptation, as well as the relatively small vocabulary of the
ATIS system.
In Figure 1, we also present the results of the combina-

tion of methods I and II with Bayesian adaptation. The
combined schemes are proven to be far more e�cient than
the simple transformation methods I and II, and the adap-
tation takes better advantage of the amount of the train-
ing sentences. The error rate is reduced by 63%, 69% and
75%, with 198, 500 and 2000 adaptation sentences, respec-
tively. Although no direct comparison can be made, us-
ing as few as 198 adaptation sentences, the error rate of
9.37% approaches the Stockholm dialect dependent perfor-
mance. For more sentences the error rate drops even more,
to 6.40%. In addition, the combined approach signi�cantly
outperforms the ML trained system when less than 1000

Word Error Rate %
Speaker Non Meth.II+Bayes Meth.II+Bayes

adapted 198 sent. 3814 sent.

d09 24.94 8.53 8.31
d0b 27.05 12.32 9.90
d0k 21.92 8.49 5.42
d0j 28.64 9.24 6.70
d0r 29.85 13.93 6.71
d0v 19.72 7.66 5.10
d12 26.29 10.07 6.39
d13 22.88 5.26 2.75

total 25.08 9.37 6.40

Table 1. Word recognition performance across
Scanian-dialect test speakers using non-adapted
and combined-method adapted Stockholm dialect
models
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Figure 2. Comparison of dialect training and adap-
tation results for di�erent number of speakers.

sentences are used, providing a solution that is more robust
and easier to train.

In Table 1, we present the word-error rate of the Stock-
holm dialect trained system for several Scanian-dialect test
speakers. We can see that the improvement in terms of
performance when the combined method is used for 198
and 3814 adaptation sentences is almost uniform across the
speakers, which veri�es the assumption that there is a con-
sistent mismatch across speakers of these two di�erent di-
alects.

To compare the robustness and trainability of the stan-
dard ML training and adaptation algorithms, we performed
training and adaptation experiments using fewer speakers
in the training set, speci�cally 12 and 6 speakers. We use
the term trainability above to refer to the ease with which
a dialect-speci�c system can be developed. Clearly, the ca-
pability of developing a dialect-speci�c system with as few
training speakers as possible is desirable, since it saves both
time and money.

The smaller subsets of speakers were selected randomly
out of the total number of 31 speakers available in the initial
training set, and were equally divided across the two gen-
ders. We tried to select speakers from all 4 sub-dialects, so
that the resulting system remains subdialect-independent.



The results are illustrated in Figure 2. We see that for stan-
dard ML training, the error rate is very large when fewer
than 1000 sentences from 31 speakers are used. Moreover,
the ML training error rate is getting even larger as the num-
ber of speakers in the training set decreases. For example, if
we use roughly 500 training sentences, the 31-speaker error
rate increases by 9% and 29% when sentences from 12 and
6 speakers are considered, respectively. On the other hand,
for the dialect-adapted system, the error rate using 12 and
6 speakers in the adaptation data remains as small as when
using the full set of 31 speakers. The small di�erences are
within the statistical error.

The reason for the signi�cantly better performance of the
adaptation schemes over standard ML training for small
number of speakers is that speaker variability in the systems
developed using adaptation techniques is captured from the
prior knowledge, which the systems trained using standard
ML techniques lack. In general, when we compare adapta-
tion and training results we can conclude that adaptation
signi�cantly outperforms training for small amounts of sen-
tences, and small number of speakers. For example, when
we perform training with 31 speakers and 520 sentences
the results obtained are similar with the adaptation exper-
iments with as few as 6 speakers and only 200 training sen-
tences. Similarly, the performance of a system trained with
31 speakers and 1000 sentences is similar to that of a system
trained with only 6 speakers and 500 sentences. Therefore,
both the robustness and trainability of an adaptation-based
system are highly increased, when compared to standard
ML training.

4. CONCLUSIONS

In this paper we have discussed the issue of dialect mis-
match in an ASR system. We found, for the pairs of dialects
that we examined, that there is a consistent degradation in
performance across speakers when there is a dialect mis-
match. Hence, we selected to improve the performance of
the system using adaptation methods. We tested transfor-
mation and combined transformation and Bayesian adapta-
tion algorithms to adapt a Stockholm-trained system to the
Scania dialect. The results showed that adaptation is capa-
ble of improving the robustness of our system, and that the
performance of the adapted system improved dramatically
over the mismatched condition with very small amounts of
adaptation data. Moreover, we showed that the recognition
performance of the adapted system does not degrade when
we reduce the number of di�erent speakers from which the
training data was collected, something not true for standard
ML training. Hence, in terms of robustness and trainability,
adaptation is a much better alternative for the development
of dialect-speci�c systems than standard ML training.
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