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ABSTRACT to obtain spectral match and duration scores. The effectiveness of
the different machine scores is evaluated based on their

This work is part of an effort aimed at developing computer- correlation with human scores on a large database. Previous
based systems for language instruction; we address the task otpproaches were based on statistical models built for specific
grading the pronunciation quality of the speech of a student of a sentences [5]. The current algorithms were designed to produce
foreign language. The automatic grading system uses SRI’'s pronunciation scores for arbitrary sentences, that is, sentences for
Decipher™ continuous speech recognition system to generatewhich there is no acoustic training data [1]. This approach allows
phonetic segmentations. Based on these segmentations angreat flexibility in the design of language instruction systems
probabilistic models we produce pronunciation scores for because new pronunciation exercises can be added without
individual or group of sentences. Scores obtained from expert retraining the scoring system.
human listeners are used as the reference to evaluate the different
machine scores and to provide targets when training some of the"e extend previous work [1] by introducing a new HMM-based
algorithms. In previous work [1] we had found that duration- score_based on p_hone pos@erlor probabilities. T_he_IgveI of human-
based scores outperformed HMM log-likelihood-based scores. In machine c_orre_latlon for this new score was significantly better
this paper we show that we can significantly improve HMM- than _b_oth Ilkt_allhood and duratl_on scores for the case of sentence
based scores by using average phone segment posterioﬁpec'f'c scoring. Whe_n averaging scores across several sentences
probabilities. Correlation between machine and human scores €Orrésponding to a given speaker to obtain speaker-level scores
went up from r=0.50 with likelihood-based scores to r=0.88 with We found that the new method required fewer sentences to
posterior-based scores, they also outperformed duration-basedgchieve a similar level of correlation. We also investigated the

scores mainly in the case of using few sentences to compute scombination of different machine scores to obtain a higher level
score. of correlation. We experimented with linear and nonlinear

regression as well as with an estimation-based approach to
predict human scores from machine scores.

1. INTRODUCTION 2. THE DATABASE

The possibility of accepting speech input in computer-based The requirements of data needed for development of the scoring
language instruction systems allows developers to complementsystem are more demanding than those typical of speech
reading and listening comprehension with activities of recognition systems [1]. A database of transcribed native read
production and conversation. In these systems, the computer mayspeech is used for training models for speech recognition and
provide some feedback of the kind that an instructor would pronunciation scoring. A database of nonnative read speech is
produce, such as an assessment of the quality of pronunciation ofranscribed and scored for pronunciation quality at different
pointing to specific production problems or mistakes. Speech |evels of detail by expert human raters.

recognition technology is the key allowing such feedback. ) o )
However, standard speech recognition algorithms were not Speech was recorded from 100 natives of Parisian French (native
designed with the goal of speech quality assessment; therefore COTPUS) and from 100 American students speaking in French
new methods and algorithms must be devised to approximate the(nonnative corpus). All the speech was recorded in quiet offices
perceptual capabilities of human listeners to grade speechUSing a high-quality Sennheiser microphone.

quality. A panel of five French teachers, certified language testers, rated

The aim of this work is to develop methods for automatic the overall pronunciation of each nonnative sentence on a scale
assessment of pronunciation quality, to be used as part of a0f 1 to 5 ranging from unintelligible to native quality. There was
computer-aided language instruction system [1][2]. The basic SOMe overlap in the speech material rated by the teachers for
pronunciation scoring paradigm [3][4][5] uses hidden Markov Consistency checking.

models (HMMs) [6] to generate phonetic segmentations of the

student’s speech. From these segmentations, we use the HMMs



3. PRONUNCIATION SCORING likelihood for each segment. Then, for each phone segment we

define the normalized log-likelihodd  as
3.1. Human Scoring [ =1/d, (1)

The human scores are the reference against which theyhere| is the log-likelihood corresponding to the -th phone
performance of the automatic scoring systems should be testedyq 4. is its duration in frames
i .

and calibrated; as such, it is important to assess the consistency
of these scores both between raters (inter-rater correlations) andThe likelihood-based score for a whole senteince , is defined as
individually within each rater (intra-rater correlations). the average of the individual normalized log-likelihood scores for

. ) . each phone segment,
Human judgments were provided by five raters on speech data

from 100 students. A more detailed analysis of the human scores
was presented in [1]. Two types of correlation were computed, at
the sentence levepairs of corresponding ratings for all the
individual sentences were correlated. At speaker levelffirst, where the sum run over the number of phones in the seritence
the scores for all the sentences from each speaker were averaged,

and then the sequence of pairs of corresponding average scored-2.2. HMM-based phone log-posterior probability

for each of the speakers was correlated. scores.
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The consistency within and across raters was assessed in a subsHi this case we use a set of context-independent models along
of the database that was rated by all five raters and twice for eachwith the HMM phone alignment to compute an average posterior
rater. The average sentence/speaker level inter-rater correlationprobability for each phone. First, for each frame belonging to a
was r=0.65/0.8; the average correlation between a rater and thesegment corresponding to the phape  we compute the frame-
average of a pool of the other raters was r=0.76/0.87. The averagéased posterior probability(qi|yt) , of the phone given the
intra-correlation at the sentence level was r=0.76. These valuesobservation vectoy,

may be considered upper bounds on what could be reasonably p(ythi)P(qi)
expected performance for the machine scoring system. P(q, |Y1) =

> P(%|a;)P(a;)

i=1

®)
3.2. Automatic Scoring

The different pronuncia’[ion SCOI’ing algOI’itth studied are all where p(ythl) is the probabmty density of the current
based on phonetic time alignments generated using SRI's gpservation using the model corresponding togghe  phone. The

Decipher™ HMM-based speech recognition system [6]; these sum overj runs over a set of context-independent models for all
HMMs have been trained using the database of native Speakers.phone C|assesp(qi) represents the prior probability of the

To generate the alignments for the student's speech we mustphone classy

know the text read by the student. We do this by eliciting speech Similarly to the previous case, the average of the logarithm of the
in a constrained way in the language learning activities, and thenframe-based phone posterior probability over all the frames of

backtracking the time-aligned phone sequence using the Viterbi the segment is defined as the posterior sppre  for the i-th phone
algorithm. From these alignments, and statistical models segment:

obtained from the native speech, different probabilistic scores are t+do1
derived for the student’s speech. The statistical models used to do A~ _ 1 ' o logP 4
the scoring are all based on phone units and as such, no statistics Pi = d; Z ogP(q |yt) @
of specific sentences or words are used. Consequently, the t=h

algorithms are text independent. The posterior-based score for a whole senteice s defined as

the average of the individual posterior scores oveiNhe  phone

Here, we review some of the previously introduced scoring )
segments in a sentence:

algorithms in [1] along with the newly introduced posterior
probability-based score.

pi - (5)
1
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p =
3.2.1. HMM-based phone log-likelihood scores i

In this approach we use the HMM log-likelihood to derive a We expect that the posterior-based score could be less affected by
score. The underlying assumption is that the logarithm of the changes in the spectral match due to particular speaker
likelihood of the speech data, computed by the Viterbi algorithm, characteristics or acoustic channel variations. The same changes
using the HMMs obtained from native speakers is a good in acoustic match would affect both numerator and denominator
measure of the similarity (or match) between the native speechsimilarly in Eq. (3), making the score more invariant to those
and the students's speech. For each sentence the phonehanges and more focussed on the phonetic quality.
segmentation is obtained along with the corresponding log-



3.2.3. Segment duration scores 3.4. Experimental Results

The procedure to compute the phone-based duration score is agve evaluated first, in terms of its level of correlation, the
follows: first, from the Viterbi alignment we measure the performance of the individual scores we have presented. Then,
duration in frames for the i-th segment; then its value is the effect of the number of sentences whose scores are averaged
normalized to compensate for rate of speech. To obtain the jn the computation of correlation at the speaker level was studied.
corresponding phone segment duration score, the log-probability Finally, we evaluated the methods to combine the different types

of the normalized duration is computed using a discrete of machine scores in order to obtain a better prediction of the
distribution of durations for the corresponding phone. The human scores.

discrete duration distributions have been previously trained from
alignments generated for the native training data. Again, the 3.4.1. Human-machine correlation of individual
corresponding sentence duration score is defined as the average scores

of the phone segment scores over the sentence .
We evaluated each of the proposed methods experimentally by

3.3. Combination of Scores computing the correlations between machine and human scores
at the sentence and the speaker level. The speech material
The combination of several different machine scores may allow consisted of 5089 different sentences read from newspapers by
to get a better prediction of the desired estimate of the human 100 nonnative speakers. These sentences were rated at least once
score. We investigated the use of linear and nonlinear regressiorby one human rater. The different machine scores for each
as well as an estimation method. individual sentence were correlated with the corresponding

. . . . _human ratings.
In the linear regression we linearly combine two or more machine

scores for each sentence, plus a bias term, to approximate théVhen obtaining the machine scores for each sentence, in all the
actual human score. The linear coefficients are optimized to experiments we removed the scores of the phones in context with
minimize the mean square error between the predicted and thesilence because their alignments may be inaccurate. Doing so
actual human scores over the sentences of the development set.produced a small but consistent increase in the correlation for all

. . . . the machine score types.
For the nonlinear regression the machine scores to be combined

are the input to a neural network that computes the mapping At the speaker level, about 50 sentence scores were averaged for
between the multiple machine scores and the correspondingeach of the 100 speakers before the correlation was computed.
human scores. The actual human scores provide the targets foiThe results are presented in Table 1.

the training of the network. The network has a single linear

output unit and 16 sigmoidal hidden units. It was trained with ]
backpropagation using cross-validation on 15% of the training . Correlation Coeff.
data. The training is stopped when performance degrades on the Algorithm

cross-validation set. Sent. Level | Spkr. Level
The regression approaches assume that the inputs are noiselessLikelihood score 0.33 0.50
and that the only source of randomness is in the predicted -

variable; this assumption is clearly wrong in our case where both| Posterior score 0.58 0.88
machlne_ and human scores are highly noisy. To overcome thls Normalized duration score 0.47 0.84
assumption we used an estimation procedure to get a prediction

of the human scores based on the machine scores. Table 1: Sentence- and speaker-level correlations between
human and machine scores using 100 nonnative speakers and

In this method the predicted human schre s computed as the
about 50 utterances per speaker.

conditional expected value of the actual human ssore  given the

measured machine scoreg, m,, ..., m,

. We see that at the sentence level the posterior-based score has the
h = E[hjm, m,, ...,m] highest correlation, followed by the duration score having a 20%
. » . lower correlation. At the speaker level the normalized duration
To compute the expectation we need the conditional probability and the log-posterior scores are comparable, rendering a

P(h{my, m,, ..., m,) that we compute as performance similar to that of the human raters as we showed in

P(my, m,, ..., m,|h)P(h) . g .
P(hjmy, my, ..., m,) = . ”l Section 3.1. The log-likelihood score is the worst at both the

sentence and speaker levels.
z P(my, my, ..., m,h)P(hy) . .
=1 Sentence-level correlations are still lower than those among
where P(h) is the prior probability of the score and the humans, suggesting that further work is needed to predict
conditional distribution P(m;, m,, ..., mn|h) is modeled pronunciation ratings using only a single utterance.
approximately by a discrete distribution based on scalar or vector
quantization of the machine scores.




3.4.2. Effect of different amounts of speaker data In Table 2 we show the average correlation coefficients for the

) different types of score combination. Linear combination of
We calculated the speaker-level correlation between human andposterior and duration scores produced a minor increase in

machine scores using various amounts of test data. We varied thgrrelation. The nonlinear combination using a neural network

number of sentences per speaker (N) from 1 to 50 in obtaining theyas more effective, increasing the correlation 7% with respect to
averaged score for each speaker. The human scores were thgyat of the single posterior score. The estimation method using
speaker averaged scores of the 100 speakers, using the entirGector quantization of the scores was better than the one using

human score data. We randomly chose N sentences per speak&cajar quantization and was comparable to the nonlinear
to obtain the speaker-average machine score. We repeated thi$,mpination method.

random experiment 40 times and averaged the correlation values
for each N.

0.9

4. SUMMARY

We introduced a new HMM-derived score based on posterior
probabilities of phone segments, and compared its performance
with previously proposed pronunciation scores applied at both
sentence and speaker levels.
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At the sentence level, the posterior probability score had a 20%
higher correlation with human scores than that obtained using
duration scores. At the speaker level it also showed better
performance, particularly when using few sentences to compute
speaker-level scores.
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:E[‘Eelmhzz; An additional 7% increase in correlation at the sentence level was
03 ‘ obtained by combining posterior and duration scores using
1o’ Number of sentences plgspeaker N (Log scale) 1’ nonlinear regression with a neural network, or, alternatively,
using an estimation method to predict the human scores given the

machine scores.
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