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ABSTRACT

Language models are usually evaluated on test texts using
the perplexity derived directly from the model likelihood
function. In order to use this measure in the framework of
a comparative evaluation campaign, we have developped an
alternative scheme for perplexity estimation. The method
is derived from the Shannon game and based on a gam-
bling approach on the next word to come in a truncated
sentence. We also use entropy bounds proposed by Shan-
non and based on the rank of the correct answer, in order
to estimate a perplexity interval for non-probabilistic lan-
guage models. The relevance of the approach is assessed on
an example.

1. INTRODUCTION

Comparative evaluation campaigns for speech recognition
systems have been initiated a few years ago under ARPA's
impulse and have proven to be a very e�cient way to boost
scienti�c progress by stimulating laboratories to compare
methods on identical data and under a common protocol.
A similar set of concerted research actions has been set up
by AUPELF-UREF1, an agency in charge of the promotion
of the French language in post-graduate education and re-
search. One of these actions is devoted to speech recognition
systems, and includes a speci�c activity on the evaluation
of language models.
Perplexity is a canonical �gure for describing the predic-

tion capabilities of a language model2 . However, perplexity
is usually derived from the likelihood of the model on a
test corpus, but this approach is not appropriate for a com-
parative evaluation campaign. In practice, it would require
either that each site computes itself the perplexity �gure
or that the software of each participant be re-implemented
within the site in charge of organizing the evaluation.
In this paper, we propose to estimate the perplexity of a

language model via its ability to solve a particular task. We
adapt the Shannon game to this purpose, and we describe a
gambling scheme that permits an alternative estimation of
the perplexity for any probabilistic language model. Under
this approach, a set of truncated sentences are provided to
every participant. For each sentence, the participants must
distribute a capital of 1.0 between each word of the vocab-
ulary, that is they must bet on the word coming just after
the truncation. The perplexity is then evaluated outside of
the participant's site as the inverse of the geometric mean
of the bets placed on the correct words.

1Association des Universit�es Partiellement ou Enti�erement
de Langue Fran�caise - Universit�e des R�eseaux d'Expression
Fran�caise.

2even though other evaluations may be more meaningful to
predict the behaviour of a model for speech recognitionpurposes.

We indicate how to choose the bets from the likelihood
values yielded by the model. We describe a way to set
constraints on the bets in order to remain in a tractable
probabilistic framework in the realistic case of an open vo-
cabulary. We illustrate the validity of the new scheme by
a few experiments. We also report on preliminary exper-
iments for generalizing the approach to non-probabilistic
language models.

2. THE SHANNON GAME

In [1], Shannon describes a method for estimating the en-
tropy of a language : a person is asked to guess the �rst
letter of a text by proposing successively some candidates
within 27 possibilities (the 26 letters of the alphabet plus
the space), until success. Once the �rst letter has been
found by the subject, he is asked to guess the second one,
and so on.
Shannon relates the statistics of the number of trials re-

quired to �nd the right answer (namely the frequency dis-
tribution of the rank of the correct answer), to upper and
lower bounds of the language entropy. Cover and King [2]
show that the Shannon game can be generalized into a gam-
bling approach, where the person is asked to place a cer-
tain fraction of a capital on each possible letter. Jelinek
[3] describes variants of the Shannon game for comparing a
language model and a human being. O'Boyle et al. [4] use
the Shannon game for assessing a model from the number
of times it predicts the correct word below a given rank.
We adapt these principles to the comparison of prob-

abilistic (and, to a certain extent, non-probabilistic) lan-
guage models in the framework of an evaluation campaign.

3. THE GAMBLING SCHEME

The estimation of the perplexity of a language model in the
gambling scheme can be formalized as follows : consider
the successive sentence fragments, obtained by discovering
progressively each word of the n-word sentence3 W :

W = < w1 w2 :::wk :::wn >

1) W 0
0 = <

2) W 1
0 = < w1

...

k) W k�1
0 = < w1w2 ::: wk�1

...

n) Wn�1
0 = < w1w2 :::wk�1wk ::: wn�1

Let V = fvjg1�j�m the vocabulary from which the words
of W are drawn.
The evaluation of the perplexity via the gambling scheme

proceeds in the following way : for each truncated sentence

3with< and>marking the beginningand end of the sentence.



W k�1
0 , the probabilistic language model puts a bet �k (vj)

on each possible vocabulary entry vj.
If the bets �k (vj) are derived from the language model

likelihood function P as :

�k (vj) = p (vj jW
k�1
0 ) =

P (W k�1
0 vj)

P (W k�1
0 )

=
P (b w1w2 ::: wk�1 vj)

q=mX
q=1

P (b w1w2 ::: wk�1 vq)

(1)

they obviously add up to 1.0. Using the chain rule, the
perplexity PP (W) can be computed as :

PP (W) = [P (W)]�
1

n =

"
k=nY
k=1

p (wk jW
k�1
0 )

#� 1

n

(2)

Therefore, by choosing bets �k (vj) equal to the condi-
tional probability of word vj in context W k�1

0
, the perplex-

ity PP (W) can also be obtained as :

PP (W) =

"
k=nY
k=1

�k (wk)

#� 1

n

(3)

In other words, the perplexity PP that would be obtained
via the likelihood is also the inverse of the geometric mean
of the bets placed on the correct words, when the bets are
computed as in equation (1).
A major feature of this scheme is that it is applicable to

any kind of probabilistic model (i.e as long as the condi-
tional probability of equation (1) can be derived from the
model parameters). In the particular case when the model
is an N -gram model, equation (1) simpli�es into the condi-
tional N -gram probability :

�k (vj) = p (vj jwk�N+1 :::wk�1) (4)

4. ADAPTATION OF THE SHANNON GAME

In practice, the gambling scheme presented in the previ-
ous section must be adapted to a comparative evaluation
campaign in several respects.

4.1. Tackling with out-of-vocabulary words
The computation of the perplexity estimate as in equation
(3) poses no problem with a closed vocabulary. With an
open vocabulary, a certain fraction of the bets must be re-
served for the possibility that the word to be predicted is
outside of the vocabulary (OOV), in order to avoid a null
term in the geometric mean. To deal with this issue, the
vocabulary V must include a particular OOV-word entry
(voov) and the participants are requested to bet on this
possibility as well. This implies that the participants must
model the entry voov. This is the approach that was adopted
for our experiments.

4.2. Randomization of the truncated sentences
For obvious reasons, it is preferable to select each trun-
cated sentence in such a way that its linguistic content does
not overlap with the one of the other truncated sentences.
Therefore, the test data W can consist of a set of distinct
sentences, each of them being truncated at a random posi-
tion. The participant has to predict the word that comes
next only. The approach can be generalised to truncated
paragraphs instead of truncated sentences, for models us-
ing a long history. Some of the experiments reported in
this paper compare perplexity scores obtained with these
randomized truncations as opposed to those yielded by the
original Shannon game (i.e exhaustive truncations).

4.3. Limitation of the list of candidates
In order to control the volume of data that has to be han-
dled for the evaluation, the number of candidates for each
truncated sentence can be set to a maximum ` � m. In the
case ` < m, the sum Ak of the bets put on the limited list
must be such that :

Ak =

r=`X
r=1

�k (ur) < 1 (5)

where ur denotes the r
th candidate, after ordering them in

decreasing bet. Then, if the correct word wk is not in the
ordered list of candidates U = (ur)1�r�`, the corresponding

term in equation (3) can be set to a 
oor value :

�
�
k =

1� Ak

m� `
(6)

This approach assumes a uniform repartition of the unas-
signed fraction of the bets (1� Ak) over all non-candidate
words (i.e the m� ` words ranked beyond `). It can easily
be shown that, if the ` candidates in U correspond indeed
to the ` best hypotheses yielded by the model (in terms
of conditional probabilities), then ��k must be smaller than
�k (u`). In other words, the 
oor value is always smaller
than the smallest bet in U . Conversely, a systematic test of
the condition 0 < 1�Ak � (m� `)� �k (u`) signals, if not
satis�ed, an erroneous answer from a participant. Experi-
mental results on the impact of this rank limitation on the
perplexity estimation are given in the next section.

5. EXPERIMENTS AND RESULTS

In order to validate the scheme on a real case, we compare
the perplexity value obtained with a particular language
model when computed from the test set likelihood on the
one hand, and from the gambling scheme on the other hand.
We investigate on the impact of several variants of the gam-
bling scheme : exhaustive versus randomized truncations
and full list versus rank limitation.
For all the experiments, the language model is a bi-gram

model, for which the conditional probability p (vjjvi) is es-
timated as :

p(vjjvi) =
maxfC(vivj)� �; 0g + �

D(vi �)D(� vj)

D
C(vi)

(7)

where C(vi) and C(vivj) denote respectively the number of
occurrences of the word vi and of the bigram vivj, D(vi �)
and D(� vj) the number of distinct bigrams respectively
starting by vi and �nishing by vj, D the total number of
distinct bigrams, and � a smoothing parameter between 0
and 1. All parameters are estimated on the training set,
except � which is optimized a posteriori so as to minimize
the perplexity on the test set (� = 0:7).
The conditional probabilities are learned on the articles

from the newspaper Le Monde covering years 1987 and 1988
(41 257 584 words). The vocabulary V is composed of the
20 000 most frequent words in the training corpus, the
OOV-word, plus 2 symbols indicating the beginning and
the end of sentences, which yields m = 20 003. The punc-
tuation is removed from the data.
The evaluation corpus is composed of n= 1 707 527 words

(� 67 000 sentences) corresponding to excerpts of Le Monde
sampled over the years 1989 and 1990 (the texts of the
BREF speech database). Among these, 105 263 occurrences
are not covered by the vocabulary V (i.e 6.16 % of the total
test corpus). On these test data, the perplexity obtained
in the conventional way, i.e using the likelihood function of
the model, is equal to 159.77.



In a �rst series of experiments we compute estimates of
the likelihood using the original Shannon game (i.e exhaus-
tive truncations) under a gambling scheme with bets ob-
tained as in equation (1). We consider 20 draws of nt con-
secutive words in the corpus from which we compute 20
distinct estimations of the entropy (Q = logPP). From

their average Q and their standard deviation �, we calcu-

late PP
g
= e

Q, and :

PP
�
0:95 = PP

g
e�1:96� PP

+

0:95 = PP
g
e+1:96� (8)

As can be seen in Table 1, the exhaustive Shannon game
yields, in the average, an estimation of the perplexity which
is comparable to the likelihood-based perplexity computed
on the entire test set (159.77).
In a second set of experiments, we use a random selec-

tion of truncated sentences obtained as follows : we draw
one word every s words in the test corpus, we extract the
corresponding sentence, and we truncate it just before the
selected word. Provided that s is larger than the length of
the longest sentence, this process produces nt = n=s ran-
domized truncations on distinct sentences. If di�erent po-
sitions for the �rst word are chosen, several sets of identical
size nt can be generated.
The results obtained for various numbers of truncated

sentences and reported in the second half of Table 1 illus-
trate the accuracy of the estimation as a function of nt. It
can be seen from this table that all average values PP ap-
proximate consistently the likelihood-based perplexity, but
that the con�dence interval for one draw is much narrower
with the randomized method as the test corpus is sampled
in a more uniform manner.
In a third set of experiments, we vary the parameter `,

i.e the rank beyond which we assume a uniform distribu-
tion of the bets that have not been allocated to the ` �rst
candidates. We compute the perplexity with these approx-
imate bets using the Shannon game on exhaustive trunca-
tions (nt = n). Table 2 illustrates the e�ect of the rank
limitation in our experiments : beyond ` = 5 000, the per-

plexity cPP estimated from the limited list becomes very
close to the actual perplexity. On the opposite, when ` is

too small, cPP overestimates the actual perplexity (see, for
an illustration, Figure 1).

6. NON-PROBABILISTIC MODELS

For non-probabilistic language models, there is no simple
way to choose the bets in the gambling scheme. However,
we can assume that the model is able, in the framework of
the Shannon game, to rank the words in decreasing order.
It is shown in [1] that entropy bounds can be obtained

from the distribution of the rank at which the correct word
is predicted by the model. In other words, an ordered list
of candidates for each truncated sentence is su�cient to
compute an interval in which the perplexity of the non-
probabilistic language model falls.
With �k denoting the rank at which the model outputs

the (correct) word wk for the truncated sentenceW
k�1
0 , and

qr the frequency with which the model outputs the proper
word at rank r (qm+1 = 0), Shannon shows that the entropy
Q of the language model is bounded by :

r=mX
r=1

r (qr � qr+1) log r � Q � �

r=mX
r=1

qr log qr (9)

In case the values of qr are available only as far as rank
` (limited list), a uniform distribution for the ranks beyond

` can be assumed. If we denote :

S` =

r=`X
r=1

qr and t` =
1� S`

m� `
(10)

the bounds in equation (9) become :

bQinf =

r=`�1X
r=1

r(qr � qr+1) log r + `(q` � t`) log ` + mt` logm

(11)

bQsup = �

r=`X
r=1

qr log qr � (m� `)t` log t` (12)

The set fqrgr>` can also be estimated from the extrap-
olation of a Zipf law [5], qr = �=r, the parameter � being
calculated in order to �t the beginning of the distribution
(fqrg1�r�`). In our experiement, this approach is quite con-
sistent with the observed shape of the rank histogram (see
Figure 2).
With the same bigram model as the one used in our pre-

vious experiments, we have estimated the lower and upper
perplexity bounds from Shannon's equations, as well as the
approximations with several values of `, with both the uni-
form tail model and the Zipf extrapolation. The results are
given in Table 2.
With no truncation of the rank histogram, the lower

bound lies very far below the real perplexity, and it may
happen, in a real evaluation, that the interval is so large
that it does not yield any conclusion in the comparison be-
tween two models. However, if the upper perplexity bound
for a non-probabilistic language model was to fall under the
perplexity of a probabilistic language model, some meaning-
ful conclusion could be drawn from this observation. With
rank truncation, the Zipf extrapolation seems much more
robust than the uniform extrapolation.

7. CONCLUSIONS

Our adaptation of the Shannon game to the evaluation of
language models within a comparative test campaign o�ers
a fair way to estimate perplexity in a single site, yet with-
out requiring a software re-implementation for each tested
model. Beyond this primary advantage, the use of the gam-
bling approach provides additional diagnostic possibilities,
such as evaluating the discordance between models, scor-
ing the model for particular classes of words or contexts or
being able to better predict the performance of the model
within a speech recognition system (given an acoustic con-
fusion matrix). Our work also underlines the possibility to
compare probabilistic and non-probabilistic language mod-
els in terms of perplexity but additional e�orts are required
to increase the e�ciency of the estimation.
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k 0 1 2 3 4 5
wk < une soci�et�e d' �economie mixte

u1 �k (u1) le 0.070 voov 0.049 voov 0.117 un 0.142 et 0.113
u2 �k (u2) il 0.054 nouvelle 0.019 de 0.081 une 0.137 > 0.092
u3 �k (u3) la 0.052 fois 0.013 > 0.079 voov 0.056 de 0.071
u4 �k (u4) les 0.050 autre 0.012 fran�caise 0.040 autres 0.027 des 0.046
u5 �k (u5) l' 0.035 telle 0.011 d' 0.038 être 0.025 fran�caise 0.043
u6 �k (u6) voov 0.028 partie 0.011 qui 0.029 �etat 0.019 mondiale 0.032
u7 �k (u7) mais 0.028 grande 0.010 et 0.026 avoir 0.014 voov 0.029
u8 �k (u8) en 0.026 certaine 0.009 civile 0.023 autre 0.013 am�ericaine 0.027
u9 �k (u9) �a 0.022 politique 0.008 am�ericaine 0.017 a�aires 0.011 du 0.026
u10 �k (u10) c' 0.022 soci�et�e 0.008 des 0.015 entre 0.007 mixte 0.021

�k 105 � �
�

k
18 3.1 10 4.3 5 2.7 89 2.7 10 2.5

k 6 7 8 9
wk sera cr�e�ee �n janvier >

u1 �k (u1) > 0.101 pas 0.061 en 0.319 de 0.392
u2 �k (u2) paritaire 0.100 voov 0.049 par 0.193 du 0.128
u3 �k (u3) de 0.078 le 0.034 �a 0.076 d' 0.066
u4 �k (u4) voov 0.041 de 0.025 pour 0.041 mille 0.061
u5 �k (u5) qui 0.037 la 0.023 il 0.040 des 0.055
u6 �k (u6) d' 0.032 l' 0.018 > 0.039 �a 0.054
u7 �k (u7) du 0.032 plus 0.018 au 0.032 > 0.023
u8 �k (u8) franco 0.031 t-il 0.016 le 0.026 au 0.012
u9 �k (u9) et 0.023 en 0.016 dans 0.025 juin 0.011
u10 �k (u10) des 0.023 un 0.015 et 0.016 septembre 0.010

�k 105 � �
�

k
35 2.5 106 3.6 37 1.0 20 0.9

Figure 1. An illustration of perplexity estimation via the gambling scheme, for the french sentence : une
soci�et�e d'�economie mixte sera cr�e�ee �n janvier. Exhaustive truncations, list limitation to ` = 10. For this sentence,
the perplexity estimate is obtained as the inverse of the geometric mean of the number in italics, namely
yielding 5094 (see section 4.3). Here, as `� m, this �gure overestimates considerably the true perplexity (174).

nt 1 000 2 000 5 000 10 000 20 000 50 000

PP
g

162.38 162.25 162.08 160.61 158.37 159.79

PP
�
0:95 j PP

+

0:95 109.09 j 241.71 120.68 j 218.14 138.88 j 189.16 140.44 j 183.68 139.24 j 180.13 149.76 j 170.50

PP
g

160.90 158.57 160.06 158.27 158.80 159.99

PP
�
0:95

j PP
+

0:95
130.52 j 198.34 144.85 j 173.59 148.64 j 172.80 152.61 j 164.13 152.73 j 165.12 156.83 j 163.20

Table 1. Geometric mean (PP
g
) and 95 % con�dence bounds (PP�

0:95 j PP
+

0:95) computed from 20 perplexity
estimations, using the Shannon game (gambling scheme) for various set sizes (nt). Top : exhaustive trun-
cations. Bottom : randomized truncations. These �gures illustrate the validity of the proposed alternative scheme for
perplexity estimation : both estimates converge towards the conventional perplexity value (159.77). The second estimate is
more accurate as the randomized truncations are more representative of the entire corpus.

` 1 10 100 1 000 5 000 10 000 20 000

cPP 7349.12 1098.54 285.72 173.99 160.50 159.85 159.77

cPPinf 5160.64 498.30 97.03 53.21 49.11 48.90 48.87cPPsup 7688.94 1228.87 332.11 204.31 190.05 188.95 188.05

cPPZ

inf 49.53 37.57 39.71 46.16 48.41 48.78 48.87cPPZ

sup 160.51 113.92 123.40 159.07 179.65 185.11 188.05

1e-06

1e-04

1e-02

1 100 10000

q(
r)

r

Figure 2. The log-log histogram of fqrg,
for the bigram model (� Zipf law).

Table 2. Comparison various perplexity estimates with several rank truncations (`). Top : Shannon game
- gambling scheme. Center : Shannon game, lower and upper bounds - uniform model. Bottom : Shannon
game, lower and upper bounds - Zipf model. For this experiment, beyond a list size of 5 000, the estimated perplexity
by the gambling scheme becomes very close to the exact perplexity. For the Shannon game without gambling, the lower bound
falls far under the actual perplexity. The Zipf model seems to be more robust to truncation than the uniform model.


