
EXTENSIONS TO PHONE-STATE DECISION-TREE CLUSTERING:

SINGLE TREE AND TAGGED CLUSTERING

Douglas B. Paul

Dragon Systems, Inc.
320 Nevada St.

Newton, MA, 02160, USA

ABSTRACT

The following article describes two extensions to the \tradi-
tional" decision tree methods for clustering allophone HMM
states in LVCSR systems. The �rst, single tree clustering,
combines all allophone states of all phones into a single tree.
This can be used to improve performance for very small sys-
tems. The single tree clustering structure can also be ex-
ploited for speaker and channel adaptation and is shown to
provide a 30% reduction in the error rate for an LVCSR task
under matched channel conditions and a greater reduction
under mismatched channel conditions. The second, tagged
clustering, is a mechanism for providing additional infor-
mation to the clustering procedure. The tags are labels for
any of a wide variety of factors, such as stress, placed on the
triphones. These tags are then accessible to the clustering
process. Small improvements in recognition performance
were obtained under certain conditions. Both methods can
be combined.

INTRODUCTION

Recently, a number of sites have started to use phonologi-
cal rule based state-wise decision-tree clustered[2] Gaussian
mixture pdfs in their hidden Markov model large vocabu-
lary continuous speech recognition (LVCSR) systems[1, 5, 9,
11]. This form of pdf simultaneously improves recognition
accuracy, predicts models for unobserved allophones, and
allows improved size vs. amount-of-training-data trade-o�s
compared to some of the earlier forms of pdf. To date, these
systems have used separate decision trees for each phone
state. Thus, a system with 40 phones and 3 states per
phone would have 120 separate trees. These systems have
usually used only the identity (and, in some cases, presence
of a word boundary) of the context phones in the clustering
questions.
The basic paradigm used in this e�ort for generating the

decision trees is as follows:

1. Train single Gaussian per state pdfs for all individual
states to be clustered (e.g. all unique triphone states
observed in the training data).

2. For each tree (group to be clustered)

(a) Combine all individual state Gaussians into a single
Gaussian for the root node.

(b) Successively split each leaf node into two leaf nodes,
each with a single Gaussian pdf using the best split
according to one of a set of questions applied to
the context phones. The best split is determined
by the largest increase in the log-likelihood of the

data. Terminate if the change in the log-likelihood
is less than a threshold or the number of observa-
tion frames assigned to a child node is less a second
threshold.

3. Prune back the trees to the desired number of leaves by
iteratively collapsing the smallest split. (The thresh-
olds of (2b) are set to generate larger than desired size
trees.) This allows generation of a prespeci�ed number
of tree leaves.

4. The leaves of the decision tree now de�ne a state tying
or clustering. Use the Gaussian associated with each
leaf to seed a Gaussian mixture pdf.

The splitting questions used here are de�ned by lists of
phones typically generated from phonological considera-
tions: for instance, the question \Is the phone a vowel?"
would be the list of vowels. The set of questions also in-
cludes a set of singleton questions which contain only the in-
dividual phone. If an allophone is contained in the question-
list, it is placed in the left child, otherwise in the right child.
A question may be optionally limited to a particular context
position.
These experiments were performed using an LVCSR

system derived from one developed at MIT Lincoln
Laboratory[8].

SINGLE TREE CLUSTERING

The restriction of one tree per phone state can be relaxed
by augmenting the splitting questions in two ways:

1. Apply the splitting questions to the phone itself (in
addition to the context phones as above).

2. Add the question \Is the state number=x?" (indepen-
dently proposed by [4]).

This set of questions now allows the clustering to proceed
from a single tree root for all phone states.
In addition, singly-rooted clustering can be performed in

two stages:

1. Use a subset of the questions and apply them only to
the monophones. Grow tree to exhaustion.

2. Continue growing using all questions and all phone con-
texts.

The results of stage 1 generate a set of intermediate roots
with a decision tree superstructure. Four sets of intermedi-
ate roots (depending on the question subset) are plausible:

1. Single root.
2. State roots (3 in the introductory example).
3. Phone roots (40 in the introductory example).
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Figure 1. Wd error rate vs. clustering tree topol-
ogy. The system had 39 phones and 3 states/phone
(117=39*3). 5K word DARPA WSJ0 SI task.

4. Phone-state roots (120 in the introductory example,
the \traditional" approach plus a superstructure).

Thus this formalism subsumes the traditional one tree per
phone-state approach and o�ers additional variety.
This ability to reduce the number of clusters (pdfs) might

be useful in several situations. If the amount of training
data is severely restricted, a single tree would have the
ability to share pdfs between phones and/or states of the
phones. (In fact, a single tree system can have fewer pdfs
than phone states.) With large amounts of training data
and large numbers of clusters, little di�erence between the
tree topologies would be expected because one would train
a very detailed split. Figure 1 shows the results of an ex-
periment which con�rms this conjecture and also suggests
that the phone root topology also performs well for very
small numbers of states. The datapoint at the top right is
equivalent to a monophone system.

Tree-based Adaptation

The singly-rooted clustering tree can also be exploited for
adaptation. The tree de�nes a hierarchical set of clusters
and a corresponding hierarchy of successive transforms such
that the number of adaptation transforms can be increased
dynamically as the amount of adaptation data is increased.
In the limit of a small amount of adaptation data, there is
only one adaptation transform (the root) whose adaptation
would produce the equivalent of cepstral mean normaliza-
tion (commonly used for blind channel equalization). In the
opposite limit of a large amount of adaptation data, each
mixture Gaussian would be adapted individually. For inter-
mediate amounts of adaptation data, some set of internal
tree nodes would de�ne the adaptation transforms. (The
mixtures can be treated as just a �nal N-way split on the
tree.)
An algorithm for tree-based adaptation of the Gaussian

means is as follows. Each Gaussian is represented by its
mean vector � and estimation count n, and each node is
also characterized by a Gaussian. De�ne the \extended
tree" to be the clustering tree and the mixture Gaussians
attached to the clustering tree leaves. (Symbol de�nitions
are at the end.)

1. Setup:

(a) Make a single Gaussian �old for each extended tree
node by a weighted combination of the Gaussians
in its immediate children.

(b) Compute the delta �c;p = ��p;c = �old;c � �old;p

between all non-root Gaussians and their parent's
Gaussians for the extended tree.

2. Operation:

(a) Align the input observations to the clustering
tree leaves using Viterbi or forward-backward
alignment from a known (supervised) or recog-
nized (unsupervised) transcription and accumu-
late posterior probability weighted observations
(n=accumulators, nn=count) for each mixture
Gaussian and make new estimates of the Gaussian
means �n = n

nn
.

(b) Propagate new Gaussian means and counts up the
extended tree:

�n;p =
1

nn;p

X

fcg

nn;c(�n;c +�p;c)

nn;p =
X

fcg

nn;c

(c) Adapt the root Gaussian:

�a;r =
nn;r

nn;r + n
0
old;r

�n;r +
n
0
old;r

nn;r + n
0
old;r

�old;r

na;r = nn;r + n
0
old;r

(d) Adapt the non-root Gaussians (top down):

�a;c =
nn;c

nn;c + n0
a;p

�n;c +
n
0
a;p

nn;c + n0
a;p

(�a;p +�c;p)

na;c = nn;c + n
0
a;p

where � is the Gaussian mean vector, n=the count,
xold=the initial value, xn=value based on new data,
xa=adapted value, xr=root node, xc=child node,
xp=parent node, and n

0 = discount(n).

The simplest discount is just a constant, but better perfor-
mance is achieved by using

discount(n) =
nm

n+m

[8] where m is the maximum value. (This has the net e�ect
of shrinking the prior count as one moves down the tree and
thus more transforms are activated.) Each non-root stage is
a local Bayesian adaptation using the parent plus the delta
as a prior. This, combined with an appropriate discount on
the prior count, produces the desired behavior: if there is
only a small amount of adaptation data for a node, then the
adapted value for the node follows the changes of the parent
and if the node has a large amount of adaptation data, it
uses that data and ignores its parent. As more and more
adaptation data accumulates, the surface dividing these two
conditions moves down the tree and the number of active
adaptation transforms increases.
Two experiments were performed to test the above pro-

cedure. Both experiments started with an SI DARPA
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Figure 2. Tree based adaptation (matched train and
test)

WSJ0 trained set of phone-state-topololgy decision-tree-
clustered grand-diagonal-variance Gaussian-mixture mod-
els with cepstral mean normalization. There were 4000 clus-
ters and up to 8 Gaussians per mixture. A DARPA base-
line 5K word trigram language model produced by Lincoln
Lab[7] was used. The test data consists of 100 sentences
from each of four speakers (the S4 development test set
from the DARPA WSJ1 dataset){a varying subset of the
�rst 75 sentences was used for recognition-time (incremen-
tal) adaptation and the �nal 25 sentences were used for
testing without adaptation. The training and test speakers
were all native speakers of American English and all used
the same model high-quality boom microphone. All adap-
tation was supervised, but the algorithm has been shown
to perform similarly for unsupervised adaptation.
The �rst experiment tested matched training and testing

environments to examine pure speaker adaptation. Three
conditions were tested: (1) adapting only the mixture Gaus-
sians (pure Bayesian adaptation using the trained means
�old as priors), (2) adapting only the tree (the mixture
Gaussians were moved as a group so that their weighted
average � equaled that of the corresponding tree leaf), and
(3) adapting the tree and mixture Gaussians according to
the full scheme described above. Figure 2 shows (1) to be
initially slow to adapt, (2) to be faster, and (3) to be fast
and to provide the best performance.
The second experiment was the same as the �rst, except

that channel/microphone mismatch was simulated by dis-
abling cepstral mean normalization in the recognizer (Fig-
ure 3). Now adapting only the mixture Gaussians (case 1)
causes the system to get worse with a very slow recovery
because the Gaussians become unbalanced (i.e. some are
adapted to the new environment, some still model the old
environment.) The tree adaptation (2) now adapts rapidly
to the new environment and propagates the gross changes
to all of the mixture Gaussians. The full method (3) does
better than either alone.

TAGGED CLUSTERING

As described so far, the only way to include such factors as
lexical stress, tones, function word dependency, and speaker
sex in the clustering is to expand the set of monophones.
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Figure 3. Tree based adaptation (mismatched train
and test)

(For instance, many sites use totally separate models for
male and female speakers.) This rapidly becomes self-
defeating because the training data is split into smaller and
smaller groups until inadequate amounts of data are avail-
able to train the individual models. One mechanism for
solving this problem is tagging.
In tagging, each phone (including the context phones) of

the triphone (or any higher order context phone) can be
augmented with any number of tags. For instance, the tri-
phone x-y-z would become x-y 1-z if the phone y had a level
1 stress tag. (Tags can also include boundary marks, such as
syllable and word boundary.) The decision tree clustering
then includes questions about the tags to allow it to trade
o� all combined data-driven and external knowledge fac-
tors without expanding the monophone set. Thus, tagging
is a very general method for including additional informa-
tion in the clustering process. It is controlled simply by
choosing the tag sets in augmented versions of a triphone
(or larger-phone) dictionary and propagation of the context
tags and phones over word boundaries according to the sen-
tence transcriptions.
One experiment with tagging evaluated the use of syl-

lable boundary tags and stress tags. The �rst test simply
added syllable boundary tags to the context phones of the
syllable boundary triphones. The second test added stress
tags to the vowels in both center and context positions in
the triphones. The third contained syllable boundary tags
and tagged all phones of the syllable with the vowel stress
tag. There were three levels of vowel stress.

No.
System preclustered Wd err rate

states
Triphone (control) 83K 8.41%
Syllable bdry tags 92K 8.47%
Vowel stress tags 136K 7.97%

Syllable bdry tags + 192K 7.89%
syllable stress tags

WSJ0 SI trained, 4000 clusters, 3 states/phone, 5K vocab,
10 WSJ0 dev test speakers, std dev �.33%

These results show no gain for syllable boundary modeling



and a moderate gain for stress modeling. (Experiments on
the same data with a di�erent dictionary, however, show
little gain for stress modeling.)
A second experiment explored speaker sex-dependent

phone modeling by tags. Both systems were identical ex-
cept that the �rst used sex-dependent phone sets and the
second used a single phone set with sex tags.

No.
System preclustered Wd err rate

states
Sex-dependent triphones 41K 8.43%
Sex-tagged triphones 41K 8.59%

WSJ0 SI trained, 4000 clusters, 3 states/phone, 5K vocab,
10 WSJ0 dev test speakers, std dev �.34%

Both methods yielded similar results in this experiment.

DISCUSSION AND CONCLUSIONS

The single tree clustering provides several advantages over
the traditional one tree per phone-state clustering. It al-
lows several variations in the structure which may be used
to advantage in small systems. One of these structures (the
phone-state intermediate root topology) subsumes the tra-
ditional method.
The singly-rooted clustering also provides an e�ective

structure for adaptation. The extended tree structure sets
up a hierarchical inheritance structure which de�nes a con-
tinuously variable number of adaptation transforms. Thus
the adaptation will only use a small number of transforms
when a small amount of data is available and as more data
accumulates, the number of transforms increases until, in
the limit, each mixture Gaussian is adapted individually.
The full range is accomplished by a single uni�ed method.
(Others have combined a small number of top level trans-
forms with bottom level Bayesian adaptation, but required
two dissimilar algorithms[3].)
The adaptation algorithm presented here uses only

Bayesian adaptation with appropriately chosen priors and
simple delta adaptation transforms to propagate the pri-
ors. It is quite likely that this algorithm can be extended
to use more complicated transforms[6, 10]. This method
also works for simple Gaussian mixtures by treating them
as a two-level tree. Then if any member of the mixture is
adapted, all are modi�ed.
The experiments performed here used supervised in�nite-

memory incremental adaptation. Other tests (not presented
here) show this algorithm to adapt e�ectively without su-
pervision. The in�nite-memory adaptation is appropriate
for research experiments, but is generally a poor model of
the real world. The algorithm described here can be triv-
ially modi�ed to incorporate a more practical exponentially
decaying memory. The algorithm can also be used for block
mode adaptation.
Tagged clustering is a fairly general mechanism for mak-

ing potentially useful information available to the clus-
tering process. Potential uses for tagging include [func-
tion] word dependence, linguistic factors, phonological fac-
tors, prosodic factors, tones, speaker groups, and envi-
ronmental factors. A number of these factors have been
used previously{tagging simply provides a single easily used
mechanism for incorporating them into the clustering pro-
cess to allow the data to determine which of these factors
should be used.

So far, the experiments using tagging have provided
mixed results. However, where recognition comparisons are
available, these results appear to be consistent with the
same factor modeled by a di�erent mechanism. Hopefully,
the simplicity of the mechanism will allow more factors and
combinations of factors to be tested.
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