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ABSTRACT

In this paper, we investigate the question of how the visual
information of lip movement contributes to command-word
recognition. The fusion of the acoustic and visual signal
can be carried out either at the feature level or at the class
level. Integration at the feature level means merging of the
acoustic and visual features to yield a combined feature vec-
tor which is feed into a HMM-system. Fusion at the class
level means separate classi�cation of the two sources of in-
formation and combination of the classi�cation results. An
HMM classi�er is used for the acoustic signal and three dif-
ferent classi�ers (HMM, DTW and ClaRe) for the visual
signal. The classi�cation results are combined using C4.5.
The recognition rates of both fusion schemes are compara-
ble. Both yield small improvements at high SNR's using
the acoustic/visual system in comparsion to the acoustic
system alone. Larger improvements (up to 12%) result at
low SNR's.

1. INTRODUCTION

In automatic speechreading, the visual information of lip
movement is used in conjunction with the acoustic signal
to enhance speech recognition. Speechreading improves the
performance of speech recognition, particularly in situations
with low signal to noise ratios [1, 2, 3, 4, 5, 6, 7, 8]. Im-
provements in recognition rate between 0% and 40% have
been achieved.

The purpose of this paper is to compare two di�erent fu-
sion architectures for command-word recognition. The �rst
one combines the data at the feature level (Fig. 1), that is,
the two feature vectors of the acoustic and visual signal are
combined into a joint feature vector, and the joint feature
vector is used as input to a classi�er. The advantage of
this approach is that statistical dependencies between the
acoustic and visual signal are taken into account during the
classi�er training. On the other hand, the fusion process
yields higher dimensional feature vectors. The higher the
dimensionality of the training vectors, the more complex
the classi�er becomes and the more samples are necessary
to train it. Too few training samples may lead to a re-
duced ability to generalize, which, in turn, results in poor
classi�cation performance on unknown test data.

The second architecture fuses the data at the class level
(Fig. 2), that is, the two signals are separately classi�ed
and the classi�cation results are combined in a subsequent
step. In that case, speci�c speech and image classi�ers can
be used for the signals. This approach is preferable if the
signals are statistically independent.

+

Image

FeaturesFeatures

HMM

Class Label

Speech

Figure 1. Fusion on feature level.
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Figure 2. Fusion on class level.

Di�erent levels of fusion in speech recognition have been
reported in the literature. Stork [6] used two di�erent
neural network architectures to fuse acoustic and visual
data on two di�erent levels. Benô�t [1] uses HMM's classi-
�ers to investigate fusion on the feature and class levels.

2. FUSION AT THE FEATURE LEVEL

An the feature level, acoustic features and one visual feature
are combined into a single feature vector. The combined
feature vectors are classi�ed using an HMM approach.



To represent the speech data, the signal is cut into 40
ms frames. Each frame is represented by a 39-dimensional
acoustic feature vector (12 mel-cepstral coe�cients with 1
energy parameter, and their �rst and second derivatives).
Each of these 40 ms frames corresponds to one lip image.
For each image, the height of the mouth is used as the
visual feature. This visual feature is extracted from the
image sequence using the algorithm described in [9] (Fig.
4).
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Figure 3. Height of the mouth of 4 persons each

speaking three times "cafeteria" after alignment us-

ing dynamic time warping (DTW).
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Figure 4. Height of the mouth of 4 persons each

speaking three times "minifabrik" after alignment

using dynamic time warping (DTW).

The combined 40-dimensional feature vectors are clas-
si�ed with an HMM-approach using the Hidden Markov
Model Tool Kit (HTK) [10]. We use 6 word models with 8
to 22 states, depending on the length of the command word;
silence is modeled with a 3 state HMM. Emission proba-
bilities are continuous-density Gaussian distributions with

diagonal covariance matrices. Normal-distributed noise was
added to the acoustic signals in order to evaluate the fusion
on the feature level, depending on the SNR.

For the recognition task, the 6 command words "stop",
"vorw�arts", "r�uckw�arts", "minifabrik", "cafeteria" and
"komm her" are used. These command words were spo-
ken by 4 speakers, approximately 10 times each. In total,
our data set consists of 262 command word samples. 197
words are used for training and 65 for testing.

The recognition rates for the acoustic signal alone and for
the combined acoustic and visual signal are shown in Fig.
5.
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Figure 5. Recognition rates at the feature level for

the acoustic signal (indicated by the solid line) and

the combined acoustic-visual signal (indicated by

the dot dashed line). The improvement is indicated

by the dotted line.

3. FUSION AT THE CLASS LEVEL

The acoustic and visual signals are classi�ed separately.
The decision tree classi�er C4.5 [11] is used to combines
the hypotheses of the acoustic and visual classi�ers.

To classify the acoustic signal, the HMM approach de-
scribed above is used again. Three di�erent classi�cation
methods are applied to the visual signal: HMM, Template
matching with DTW, and ClaRe [12]. The input signals for
the HMM and DTW classi�er are the median �ltered signal
of the height of the mouth. For the ClaRe approach, visual
data are preprocessed in order to get �xed length input
vectors. This preprocessing includes noise/speech segmen-
tation, resampling of the data, and principal component
analysis.

The classi�cation rates achieved by the di�erent ap-
proaches are: 37% for the HMM, 61% for the DTW and
60% for the ClaRe approach. The results of DTW clas-
si�cation are fused with the HMM results of the acoustic
signal.

The input to the C4.5 decision tree are the indices of the
3 best classes of the acoustic HMM classi�er and the scores
for all 6 classes of the visual DTW classi�er. Thus a 9-
dimensional vector with 3 symbolic and 6 numeric values is
fed into C4.5. The ability to combine symbolic and numeric
data is one of the advantages of C4.5. We do not use the
total log probabilities of the HMM classi�er because in our
experiments they did not represent the reliability of the N-
best classes. The recognition rate for the acoustic signal
alone and the combined acoustic and visual signal is shown
in Fig. 6.
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Figure 6. Recognition rates at the class level for the

acoustic signal (indicated by the solid line) and the

combined acoustic-visual signal (indicated by the

dot dashed line). The improvement is indicated by

the dotted line.

4. CONCLUSIONS

Our experiments show an improved recognition rate for the
fusion at the class level as compared with the fusion at
the feature level. In particular, at an SNR of -9 dB the
class-fusion system outperforms the feature-fusion system.
These results can be attributed to the independence of the
acoustic and visual signal, which is captured by the speci�c
adaptation of the acoustic and visual classi�er. Although,
similar results have been reported in the literature [6] and
[1], our approach is novel in that it uses decision tree clas-
si�cation for fusion of the �rst level classi�cation results.
This enables us to combine both numerical and symbolic
data and to produce explainable results.

1

REFERENCES

[1] A. Adjoudani and C. Benô�t, Audio-Visual Speech
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