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ABSTRACT

In this paper, we propose a signal prototype classi�cation
and evaluation framework in acoustic modeling. Based on

this framework, a new tree-structured likelihood function is

derived. It uses a designated cluster kernel fCm for signal
prototype classi�cation and a designated cluster kernel fLm
for likelihood evaluation of outlier or tail events of the clus-

ter. A minimum classi�cation error (MCE) rate training
approach is described for designing tree-structured likeli-

hood function. Experimental results indicate that the new

tree-structured likelihood function signi�cantly improves
the acoustic resolution of the model. It has a more sig-

ni�cant speedup in decoding than the one obtained from

the conventional approach.

1. INTRODUCTION

In general, a speech recognition system based on con-

tinuous density mixture Gaussian pdfs often demon-

strates a better speech recognition performance than

its discrete counter parts. However, one of the prob-

lems associated with using mixture Gaussian pdfs in

speech recognition is its computational cost. Evaluat-

ing mixture Gaussian pdf in speech recognition often

consumes signi�cant amount of CPU time. This prob-

lem becomes even more acute when the HMM model

set contains a large number of di�erent Gaussian pdfs,

as typical in detailed context dependent acoustic mod-

eling.

In this paper, we describe a general signal proto-

type classi�cation and likelihood evaluation paradigm

in acoustic modeling. In this approach, the signal space

formed by observation vectors is partitioned into sub-

spaces, and in each subspace, the signal becomes more

homogeneous with less impurities[6]. Therefore, it can

be modeled by a suitable mixture density function of-

ten with very few pdf kernels. This approach inte-

grates signal prototype classi�cation with mixture den-

sity modeling, providing a new dimension in modeling

various acoustic units in speech recognition. Based on

this framework, a new type of tree-structured likeli-

hood function is derived and a minimum classi�cation

error rate approach is described for designing its cluster

kernels.

For a mixture Gaussian density, the likelihood of ob-

serving O at a given state is

l(O) =

MX
m=1

�mGm(O;�m; �
2
m) (1)

where Gm is multi-dimensional Gaussian pdf kernel,

�m and �2m are mean and variance vectors. In order to

reduce the cost of evaluating mixture Gaussian pdfs in

speech recognition, several schemes were proposed in

the past with di�erent level of success[1][2]. From the

point of view of the signal prototype classi�cation and

likelihood evaluation framework, these schemes intro-

duce certain signal prototype classi�cation procedures

for a given set of Gaussian pdf kernels in the mixture.

For an input observation vector, Gaussian pdfs in the

mixture density are classi�ed to be either active or non-

active. For Gaussian pdfs in the non-active class, the

current observation vector prototype corresponds to an

outlier event. The likelihood value of the observation

vector from these Gaussian pdfs will be small and in-

signi�cant. Therefore, using a table look-up or a grand

Gaussian kernel to approximate its value becomes rea-

sonable. In decoding, only Gaussian pdfs in the active

class are fully evaluated. This results in a signi�cant

savings in computational cost.

One approach of signal prototype classi�cation is

based on VQ clustering of Gaussian pdfs in the model

set. In this approach, the input observation vector is

�rst classi�ed to its nearest codeword using a weighted

Mahalanobis type distance[2]. Each codeword in the

codebook is related to a subset of Gaussian pdfs, and

only the Gaussian pdfs which belong to the nearest

codeword of the observation vector are marked active.
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This approach is simple and easy to implement. How-

ever, using a Mahalanobis type distance to decide an

outlier event for Gaussian pdfs is, in many cases, not

very accurate. Tree-structured likelihood function is

another approach[1]. It uses a decision tree based

method for signal prototype classi�cation. In our ex-

periments, it often o�ers better speed and performance

trade-o�s than VQ based approach.

2. TREE-STRUCTURED LIKELIHOOD

FUNCTION

In tree-structured likelihood function, each Gaussian

kernel is organized as a node in a decision tree. The

Gaussian pdfs which occur in the original set of HMMs,

fN1[:]; � � �; Nk[:]; � � �NK [:]g, form the base root nodes

of the tree. The Gaussian at the higher level tree node

is called a cluster pdf , because it corresponds to the

set of its next level child node Gaussian pdfs. The

cluster pdf is usually obtained by approximating the

mixture of all child pdfs in the cluster using a single

Gaussian pdf . Fig 1. illustrates the structure of the

tree structured likelihood function.

In recognition, a top down tree classi�cation proce-

dure is performed. The top level tree nodes are calcu-

lated �rst to determine active nodes at the top level

according to certain selection criterion. One typical se-

lection criterion is based on top N rule. Tree nodes

are marked active if their cluster pdf likelihood scores

are among the top N scores at that level. This pro-

cess is propagated down to every level of the tree. At

each level, nodes with active parents are calculated,

and among them, active nodes are determined. In de-

coding, the base layer Gaussian pdf is evaluated only

if its immediate parent is active. Otherwise, its value

is approximated by its closest active cluster (ancestor)

pdf . Typically, the number of tree levels is less than

three, and the number of nodes at each level follows

roughly a square root law.

One approach of designing tree-structured pdf is

based on a divergence distance measure using a stan-

dard K-means procedure[1]. The divergence distance

measure between two pdfs fk, fm in this approach is

d(fk; fm) = D(fk jj fm) +D(fm jj fk); (2)

where D(p jj q) is the Kulllback-Leibler (K-L) distance
or relative entropy between two distributions[5]. For

Gaussian pdfs with diagonal covariance matrix, the

right hand side of (2) becomes

X
i

(
�2k(i) + �2

km(i)

2�2m(i)
+

�2m(i) + �2
km(i)

2�2k(i)
� 1); (3)

�
�
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Figure 1: A layered decoding network architecture.

where �2
km(i) = (�k(i)��m(i))

2, �k(i), �m(k) are i-th

components of the mean vectors of fk, fm respectively,

and �2k(i), �
2
m(k) are i-th diagonal components of the

covariance matrices of fk, fm.

The clustering algorithm in this design is done by ap-

proximating the Gaussian pdfs in the cluster by a single

cluster Gaussian pdf , assuming that child Gaussians in

the cluster form one grand mixture distribution. The

mean and variance of the cluster pdf fm are estimated

as follows:

�m(i) =
1

K

KX
k=1

Z
xk(i)fk(i)dx =

1

K

KX
k=1

�k(i);(4)

�2m =
1

K

KX
k=1

Z
(xk(i) � �m(i))

2fk(i)dx

=
1

K
[

KX
k=1

Z
x2k(i)fk(i)dx�K�2m(i)]

=
1

K
[

KX
k=1

�2k(i) +

KX
k=1

�2k(i) �K�2m(i)] (5)

The K-means estimation procedure of tree-structured

likelihood function consists the following steps:

1. Initialization of cluster pdfs.

2. Determine cluster membership using the distance

function of (2).

3. Re-estimate the cluster pdfs using (4) and (5).

Iterate steps 2 and 3 until the improvements in global

distortion between each iteration becomes less than a

speci�ed threshold �.



3. A CLASSIFICATION AND

EVALUATION APPROACH

One of the important issues in tree-structured likeli-

hood function is how to improve its acoustic resolution

while reducing the number of Gaussian pdfs to evalu-

ate. This is critical, because the loss of acoustic res-

olution due to likelihood function approximations can

lead to a signi�cant increase in the number of active

nodes in the search beam. Additional savings in likeli-

hood computation can be o�set by a much heavier cost

on the search and recognition performance. In partic-

ular, when high resolution acoustic model is used, the

percentage of Gaussian pdfs actually evaluated in the

search beam can be already well below 10%. This im-

poses a very stringent constraint on the quality of the

tree-structured likelihood function.

In tree-structured likelihood function, the original

approach is based on one single cluster kernel to do

both signal prototype classi�cation and likelihood eval-

uation. This can create problem and is a cause of losing

acoustic resolution in tree-structured likelihood func-

tion. One way to see this is from the signal proto-

type classi�cation and evaluation framework. In tree-

structured pdf function, classi�cation kernel is to rep-

resent the inliers of the cluster. However, the likelihood

value of the cluster kernel is used in likelihood evalu-

ation only when the observation vector is an outlier

to the cluster. This is because if the observation vec-

tor is an inlier to the cluster, it will activate the child

nodes in the cluster and be evaluated by more accurate

lower layer kernels. Therefore, likelihood evaluation at

cluster level is for outlier or tail events of the cluster,

whereas the classi�cation kernel is to determine if the

observation vector is an inlier to the cluster.

In order to solve this problem, we propose a new tree-

structured likelihood function, in which a designated

cluster kernel fCm is used for signal prototype classi�-

cation and a separate designated cluster kernel fLm is

used for likelihood evaluation. The classi�cation kernel

fCm is for inlier signal prototype detection and the like-

lihood evaluation kernel fLm is for evaluating outliers or

tail events of the cluster. It is not di�cult to visualize

that fCm and fLm can have very di�erent characteristics.

The cost of evaluating fLm in decoding is almost neg-

ligible. This is because fLm is for outlier events and

does not need to be evaluated in advance. It can be

evaluated on demand and be cached. Moreover, fLm is

evaluated only if a pdf in the mixture distribution of

an active node is not active. The model enhancement

due to fLm often leads to a signi�cant reduction of the

number of active nodes in the search beam and a much

better recognition performance.

4. MCE TRAINING OF

TREE-STRUCTURED PDF

Designing likelihood evaluation kernel fLm for outliers

or tail events is in general a very di�cult problem. In

this paper, we propose an approach in which cluster

kernel fLm estimation is embedded into the minimum

classi�cation error (MCE) rate training[4]. In particu-

lar, the string error rate based MCE approach can be

applied to designing fLm in tree-structured pdf . The

loss function in this approach is constructed through

the following four steps.

(1) Discriminant function in minimum string error

rate training is de�ned as

g(O;Sk;�) = log f(O;� �MSk
; Sk j �); (6)

where Sk is the k-th best string, � �MSk
is the optimal

path (state sequence) of the k-th string given the model

set �, and log f(O;� �MSk
; Sk j �) is the related log-

likelihood score on the optimal path of the k-th string.

For the correct string Slex, the discriminant function

is given by

g(O;Slex;�) = log f(O;� �MSlex
; Slex j �); (7)

where Slex is the correct string, � �MSlex
is the optimal

alignment path and log f(O;� �MSlex
; Slex j �) is the

corresponding log-likelihood score.

(2) Misclassi�cation measure in minimum string er-

ror rate training is de�ned as

d(O;�) = �g(O;Slex;�)+logf
1

N � 1

X
Sk 6=Slex

eg(O;Sk;�)�g
1

� :

(8)

(3) Loss function in minimum string error rate train-

ing is de�ned as

l(O;�) =
1

1 + e�d(O;�)
; (9)

where  is a positive constant, which controls the slope

of the sigmoid function.

(4) The expected loss which is associated with the

string error rate is given by

L(�) = EO[l(O;�)]: (10)

The likelihood evaluation kernel fLm occurs explicitly

in the string likelihood function log f(O;� �MS
; S j �).

However, in order to reconstruct the local likelihood

function in training, the activation history of the clas-

si�cation cluster kernel fCm needs to be saved.



5. EXPERIMENTAL RESULTS

The proposed approach was applied in several appli-

cations. In order to illustrate the issue, we focus on one

application of recognizing long digit strings from a rel-

atively noisy environment. The acoustic model used in

this study was a high resolution, inter-word context de-

pendent model set with 274 context dependent acous-

tic model units [3]. This model is of very high acoustic

resolution. The inter-word context dependency is ex-

plicitly modeled and each digit model was represented

as a context dependent graph with 12 fan-in heads, one

body and 12 fan-out tails.

The speech used in the test were utterances of 16

digit strings collected from the telephone network with

an average duration of 11 seconds/utterance. Table

2. illustrates the performance comparison for vari-

ous approaches based on 100 test sentences. In VQ-

assisted approach, an 128 entry codebook with � = 1:5

was used[2]. The tree baseline was a two level tree-

structured pdf obtained from the original divergence

distortion measure approach described in Section 2. It

has 10 �rst level cluster nodes and 80 second level clus-

ter nodes. The root layer has 6700 Gaussian pdfs which

occurs in the original model. A top (5, 10) rule is used

in recognition. The active nodes at the �rst level of the

tree were among the top 5 scoring nodes and the active

nodes at the second level were among the top 10 scor-

ing nodes whose parents were active. Tree new gpd

was based on the new tree-structured pdf derived in

Section 3 and trained using MCE approach. It had

the same number of tree nodes as the tree baseline,

but there were two cluster pdfs (fCm ; f
L
m) on each tree

node as illustrated in Fig 1. Same top (5, 10) rule

was used in recognition. The VQ based approach suf-

fered a signi�cant loss of recognition performance and

the decoding speed was also heavily penalized. The

tree baseline gave a reasonable performance. The new

tree-structured pdf showed a more signi�cant speedup

and a much better recognition performance. The use of

the designated likelihood evaluation kernel has a posi-

tive impact on both speed and performance.

WdErr Run Time Speed factor

Baseline 1.3% 1305s 1

VQ assisted 3.4% 1153.7s 1.13

Tree baseline 1.6% 1066s 1.22

Tree new gpd 1.4% 872.2s 1.50

Table 1: Comparisons between di�erent approaches

One thing needs to mention is that the baseline

HMMs was of very high resolution. With beam search,

only 9.2% Gaussian pdfs were actually evaluated in de-

coding. The percentage of Gaussian pdfs evaluated in

Tree baseline was about 4.5%, but the average num-

ber of active nodes in the search beam was increased

by a signi�cant 33%. In Tree new gpd, the percentage

of Gaussian pdfs evaluated in decoding was about 4%,

but the number of active nodes in the search beam was

much reduced. This is a strong indication of a much

improved acoustic resolution in the new tree-structured

likelihood function, and the speedup gain is more than

doubled from 22% to 50% which is on top of an already

very e�ective beam search strategy.

6. SUMMARY

In this paper, we propose a signal prototype classi�-

cation and evaluation framework in acoustic modeling.

Based on this framework, a new tree-structured likeli-

hood function is derived. It uses a designated cluster

kernel fCm for signal prototype classi�cation and a des-

ignated cluster kernel fLm for likelihood evaluation of

outlier or tail events of the cluster. A minimumclassi�-

cation error (MCE) rate training approach is described

for designing tree-structured likelihood function. Ex-

perimental results indicate that the new tree-structured

likelihood function signi�cantly improves the acoustic

resolution of the model. It has much smaller perfor-

mance degradation and a more signi�cant speedup in

decoding than the one obtained from the conventional

approach.

Acknowledgment

The author would like to thank Dr. S. Moon, Dr. E.

Burhke, Dr. C.-H. Lee and Dr. B.-H. Juang for their

help and discussion.

REFERENCES

[1] T. Watanabe, K. Shinoda, K. Takagi and E. Yamada
\Speech Recognition Using Tree-Structured Probabil-
ity Density Function",Proc. ICSLP-94

[2] E. Bocchieri \Vector Quantization for the E�cient
Computation of the Continuous Density Function",
Proc. ICASSP-93, pp 692{695 (1993), pp 380{385.

[3] C.-H. Lee, W. Chou, B.-H. Juang, \Context depen-
dent acoustic modeling for connected digit recogni-
tion", 1993 ASA Fall meeting, Denver, Oct 93.

[4] W. Chou, C.-H. Lee and B.-H. Juang, \Minimum error
rate training of hidden Markov models based on the
N -best string models", Proc. ICASSP'93, Vol. 1, pp.
652{655

[5] T. Cover and J. Thomas \Information Theory", John
Wiely & Sons Inc, 1991.

[6] L. Breiman, J. Friedman, R. Olshen and C. Stone
\Classi�cation and Regression Trees" Wadsorth &
Brooks/Cole Advanced Books & Software, 1984


