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ABSTRACT

The estimation of the HMM parameters has always been
a major issue in the design of speech recognition systems.
Discriminative objectives like Maximum Mutual Informa-
tion (MMI) or Minimum Classification Error (MCE) have
proved to be superior over the common Maximum Likeli-
hood Estimation (MLE) in cases where a robust estimation
of the probabilistic density functions (pdfs) is not possible.
The determination of the overall likelihood of an acoustic
observation is the most crucial point of the MMI-parameter
estimation when applied to continuous speech systems. Con-
trary to the common approaches that estimate the over-
all likelihood of the training observations by evaluating the
most confusing sentences or by applying global state fre-
quencies, this paper suggests to perform a dictionary ana-
lysis in order to get estimates for the dictionary-based risk
of mixing up each two HMM states. These estimates are
used to estimate the observations’ likelihood and to control
the discriminative MMI training procedure.

Results on a monophone SCHMM speech recognition sys-
tem are presented that prove the practicability of the new
approach.

1. INTRODUCTION

The most popular approach for the estimation of the para-
meters of an HMM speech recognition system is the Max-
imum Likelihood Estimation (MLE). It aims to maximize
the likelihood of the training observations X as output of a
given correct transcription W, while neglecting the output’s
overall likelihood. It can be written as

ML = argrknaxpx(X|W) (1)

The better the assumed family of distributions covers the
true distribution of the data and the more training data is
available, the closer the pdfs estimated according to Max-
imum Likelihood converge to the true distributions [1]. The
more these assumptions are not met, however, discriminat-
ive training procedures like the Maximum Mutual Informa-
tion Estimation (MMIE) can provide more useful parameter
estimates [2].

The objective of the MMIE differs from the MLE by relating

the observation’s likelihood given the correct transcription

to its overall likelihood:

N = alrgrknaxh()(7 w)

p >\(X |W) (2)

pA(X)
This relation takes into account that the success of the recog-
nition procedure not only depends on the likelihood of the
correct HMM-sequence but on the likelihood of the possible
incorrect sequences as well. Several publications reported
the superiority of the MMIE over the MLE for tasks like isol-
ated word recognition [2] and phonetic recognition [3] where
the overall likelihood of an observation can be determined
exactly according to

= argrknax(Hx(X) — H\(X|W)) = argl;mx

pa(X) = Y pa(X|W)p(W) (3)

all W

as the number of possible transcriptions is limited.

In continuous speech recognition systems though, the ex-
act computation of px(X), that has to take into account all
possible word sequences, is considered to be too complex or
it is simply impossible in large vocabulary systems. Hence
methods for the approximation of px(X) have to be found.
Common approaches estimate px(X) by considering only
the most confusing ("best”) sentences which are those sen-

tences W with high values for p(X|W)p(W).

pA(X) =D pa(X[W)p(W) &= > pa(X[W)p(W) (4)

all W best W

N-best lists [4] and word-lattices [5, 6] have been success-
fully applied for such an estimation.

These approaches have two major disadvantages. The one
is the computational complexity caused by the need for sev-
eral n-best or word-lattice construction procedures on the
training data. The other one is the dependence on the con-
fusion measured on the training data that only contains a
small fraction of all the possible confusion and that might
be specifically distributed misrepresenting the distribution
of confusion on unseen test data.

A second possible approach for a discriminative parameter
estimation of continuous speech recognition systems is based
on the usage of global estimates for the HMM states’ over-
all frequency of appearance p(wj). For the sake of sim-
plicity we now provide that each of the P HMMs consists



of S emitting states. With T as the number of training
samples, X = (z(1)...2(7")) now representing the training
samples’ feature vectors, W = (w(1)...w(7T)) representing
the phone- or HMM-transcription of these observations
and S* = (s*(1)...s*(T)) representing the state alignment
with respect to the parameter set A, such that w(n) is in
state s*(n) at a time-step n, px(X) is estimated by

1)

i=1 y=1 k=1

Dlws, k)p(w; k) (5)

pa(wj, k) resembles the overall frequency of HMM w; be-
ing in state k and pa(z(i)|wj, ) is the output probability of
HMM wj for (i) when being in state k. (The parameter
set A is supposed to exclude the HMMs’ transition prob-
abilities, as they are not to be estimated discriminatively.
Therefore they have been left aside in equation (5).)

In this approach each HMM state’s output probability is
weighted by its overall frequency of appearance p(wj,k).
With the p(wj, k) usually measured on the training data
this equation is to some extent certainly correlated with the
language model, namely as much as the training data is.
Nevertheless, it will be referred to as language model inde-
pendent, as it neglects the impact of the language model on
the possible HMM sequences.

Because of the outlined inconveniences of these common ap-
proaches, we developed the dictionary-based MMI-training,
a very different approach that does not incorporate the con-
fusion on the training data, but predicts possible errors by
an analysis of the dictionary.

2. BASIC IDEA OF THE
DICTIONARY-BASED APPROACH

The dictionary, the language model and the HMM topology
control which states of which HMMs compete with each
other in the recognition procedure and which are less relev-
ant for a specific observation. And as a matter of fact it is
most important to discriminate the pdfs of those states that
compete the most. So the idea is to extract estimates for
the degrees of competition between each two states straight
from the dictionary. The following example dictionary illus-
trates the basic idea:

book /b/ Ju/ Jk/
look A/ /U k)
looks NI s
brick /v /) 1)k

It is very important with respect to the recognition error
to discriminate the pdfs of the HMMs /b/ and /1/ as the
words book and look differ only by these phones. Further-
more it is important to discriminate (the ending of) HMM
/k/ from HMM /g/ in order not to mix up look and looks.

I Actually, the phonetic transcriptions are most commonly not
given with respect to each feature vector, but simply as a se-
quence of phones pj ...px (possibly derived from a sequence of
words) and the precise assignments w(:) = pj are part of the
parameter estimation process. This circumstance is left aside for
the sake of simplicity. The w(7) can be assumed to be computed
by a viterbi-alignment according to the parameter set A.

Additionally the HMM /U/ should be discriminated from
the concatenation of /r/ and /I/ in order to distinguish
book and brick.

On the contrary, discriminating /1/ and /k/ is less import-
ant in this case because mixing up these phones does not
lead directly to another word of the dictionary.

3. FORMALISM FOR THE
DICTIONARY-BASED TRAINING

With the language model independent estimation of px(X)
according to (5) the MMI-equation (2) yields

T

)\Mé\l/n —argmaxH = Spk( ()|’LU(Z),S>\(Z))
indep O Z:: Zz:

(6)

(1)|w;, k)pa(w;, k)

In this equation the term px(wjy, k) weights the influence of
each states’ output probability according to its frequency of
appearance. From the point of view stated in the previous
section, these weights can be interpreted as estimates for the
importance of discrimination or as a degree of competition
between w(7).s*(i) ? and w;.k. They can be replaced by
general estimates c(w’, s', w", s") for the degree of competi-
tion among each two states s’ and s” of each two HMMs w’
and w'’ which leads to an estimation of pj (X) according to

=TT S i

i=1 j=1 k=1

|’LU], )(w(i)vsk(i)ijvk) (7)

and the general MMI training objective

ﬁ mwwww
|w]7 )c(w(z)7 sk(i)7 wj, k)

(8)

In this context the language model independent MMI-
equation (6) can be seen as a special case of (8) where the
c(w(i),s*(i), w;, k) are estimated as px(w;, k). Certainly,
the frequency of appearance of state k& of phone w; is a suit-
able measure for the importance of discrimination, but the
next section and our results will show that better estimates
can be gained from a careful dictionary analysis.

)\MMI = argmax
general

4. DICTIONARY ANALYSIS

According to the example in section 2 the principle pro-
cedure of the dictionary analysis is to search for all pairs
of similar dictionary words and to consider these pairs as
possible confusions and then to evaluate the contribution
of the involved states in the assumed confusions and to
set c(w’, s, w", ") proportional to the total contribution of
w'.s" and w'".s".
The detailed realization of this method largely depends on
the structure of the HMMs. Therefore the rest of this section
will give a more detailed description of the way we derived
dictionary-based estimates for the values c(w’, s', w", s") for
”standard” [7] recognition system of linear HMMs of three
emitting states each.
We found that most of the recognition errors belong to the

2w.s denotes state s of HMM w.



following three types that were already illustrated in the ex-
ample of section 2:

1:0 confusion where one phone is not seen or one phone is
added by mistake (deletion/insertion)

1:1 confusion where one phone is mistaken for another one
(substitution)

1:2 confusion where one phone is mistaken for two others or
two phones are mixed up by one other phone (corresponding
to a substitution next to a deletion or insertion)

We estimated the contribution of each state to the confusion
with each state of the confusing HMMs according to the fol-
lowing matrices:

1:1 confusion
In a substitution of the phones A and B the contribution of
the states was weighted as

HMM B HMM B HMM B

average contribution

in a 1:1 confusion State 1 State 2 State 3
HMM A State 1 0.7 0.2 0.1
HMM A State 2 0.2 0.6 0.2
HMM A State 3 0.1 0.2 0.7

The values in the matrix estimate the contribution of a state
to the interference with the specific state of the other HMM.
The high values in the diagonal stand for the circumstance
that when mixing up A with B it is mainly the first state of
A that is being mixed up with the first state of B, the second
of A with the second of B and so on. Thus the dictionary-
based MMI-training will have to discriminate these states
the most with respect to the 1:1 confusions.

2:1 confusion
The contribution of the HMM states in a 2:1 confusion
between two phones A;,A> and B was estimated as

average contribution | HMM B HMM B HMM B
in a 2:1 confusion State 1 State 2 State 3
HMM A; State 1 0.5 0.1 0
HMM A; State 2 0.3 0.15 0
HMM A; State 3 0.1 0.25 0.1
HMM A, State 1 0.1 0.25 0.1
HMM A, State 2 0 0.15 0.3
HMM A, State 3 0 0.1 0.5

1:0 confusion

The contribution of the states in an insertion or deletion of a
phone A between the phones B, B> was weighted according
to

average contribution | HMM A HMM A HMM A
in a 1:0 confusion State 1 State 2 State 3
HMM B, State 1 0.1 0 0
HMM B; State 2 0.2 0.15 0
HMM B; State 3 0.6 0.35 0.1
HMM B, State 1 0.1 0.35 0.6
HMM B, State 2 0 0.15 0.2
HMM B> State 3 0 0 0.1

These matrices were obtained heuristically. More profound
methods could determine individual matrices for each pair
of HMMs by considering their transition probabilities and
the average state durations.

We scanned the dictionary to find the possible confusions of
these types and summed up the state-conditioned contribu-
tions to Nyt ! wll sl

. . ot H 1
E contribution of w'.s" and w".s

confusions with w
and w!! involved

nw R =
7

(9)
From these values we derived the estimates c,,/ o/ v o1 ac-
cording to the following normalization

Mol sl w!l !

! 1
Tw' Fw
Z,—l Zk:l w!yslwyk

Cwlyslywllysll = - (10)

pa(w’ 8"y tw'=w

Certainly, the considered primitive types of confusions only
represent a subset of all the possible confusion that might
occur on real data. However, they seem to represent the
state to state relation in all confusions very well as our res-
ults prove.

5. TRAINING ALGORITHM

For maximizing the MMI-criterion (2) several algorithms
have been proposed. [8] showed that even the EM-algorithm
can be used. We chose a gradient-descent procedure to
optimize the means mj of the Gaussian pdfs of a SCHMM-
system. With diagonal covariance matrices o and mixture
weights djs for state s of HMM w; the pdfs are defined as

N )?
iy —
- _% 2 BT
|’LUz, Z =1
\/ (2m) |ch
so that the partial derivations are given by

S(HAX) — HA(X|W)) _ Alog pA(X|W) —

am]k am]k

dlog pa(X)

_ Z <8logm(x(i)|w(i),sx(i))

X am]k
=1

omj g

px(m(i)|’wl, m)c(w(z), Sk(i)v wi, n))

and

N
2
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Opa(z|w;, s) _d .
om,i M RVCE R

6. EXPERIMENTS AND RESULTS

We applied the dictionary-based training algorithm on a
monophone SCHMM speech recognition system for the Re-
source Management 1000 word, speaker independent, con-
tinuous speech recognition task. As features we used a
12-value mel-cepstrum, log energy and these values’ first
and second derivatives in four independent streams each
modeled by 200 shared Gaussian mixtures. After the stand-
ard ML-training (EM-algorithm) we optimized the Gaussi-
ans’ means of each stream according to the language model



LM indep. dictioary-
Test ML MMI (6) | based MMI
February’89 9.76% 10.15% 9.25%
October’89 12.11% 11.66% 11.36%
February’91 9.66% 9.34% 9.34%
September’92 16.61% 15.98% 15.16%
Average 12.04% 11.78% 11.27%
Error reduction
compared to ML 2.2% 6.4%

Table 1. Word error rates on the RM database

independent MMI-equation (6) and according to the new
approach (8), with the values c(w’, s', w", s") estimated ac-
cording to (9) and (10). Table 1 shows the word error rates
on the four SI test sets that were obtained with the standard
word pair grammar of perplexity 60. The ML trained sys-
tem performs remarkably well considering that it does not
make use of context-dependent phones. Its pdfs seem to
be close to the real distributions. Regarding this, the gain
of 6.4% corresponds to what has been reported for other
discriminative training approaches [4, 5, 6]. It should be
pointed out, that the results obtained with the ML-trained
monophone SCHMM system can be considered as very good
results for this database with monophone models. There-
fore, the reported error reductions have to be rated as con-
siderably strong improvements. The reduction of the error
rate compared to the language model independent training
proves the importance of an appropriate consideration of the
language model in the MMI training procedure.

7. CONCLUSION

The paper presented a novel approach for discriminative
language model dependent HMM parameter estimation for
continuous speech recognition systems. [t has been shown
that useful estimates for the complete likelihood of the train-
ing utterances can be computed without the need for time
consuming n-best or word-lattice recognition procedures.
This considerably simplifies the MMIE procedure, espe-
cially for large vocabulary systems with a large amount of
training data. In addition to that, the new approach is inde-
pendent of the distribution of confusion on the training data
so that it is capable of providing useful discriminative HMM
parameter estimates in cases where the other approaches fail
due to a misrepresentation of the real distribution of confu-
sion.

Our future work will focus on the extension of the proposed
HMM parameter estimation on more complex recognition
systems that make use of triphones, different kinds of mix-
ture sharing and clustered HMMs. Furthermore we will try
to develop more profound procedures for the estimation of
the state-to-state degrees of competition that will not only
analyze the dictionary but also make use of the words’ global
probabilities of appearance and the language model-based
probabilities of mixing up two specific words.
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