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ABSTRACT

The paper studies the use of discriminative techniques for

a telephone based isolated digit recognizer with respect to

a reduced system complexity. The combination of Linear

Discriminant Analysis (LDA) and Minimum Error Classi-

�cation (MEC) training provides improved system perfor-

mance at reduced costs for the training process and for the

application. Experiments are performed on an isolated digit

database recorded over public lines including approximately

700 speakers. The use of a single linear transformation ma-

trix based on LDA allows the use of density modeling, that

doesn't consider variances explicitly, at a high recognition

rate. Minimum Classi�cation Error training is found to

perform best in case of a small amount of system param-

eters. A reduction of error rate up to 80% was achieved

by the combination of the two methods for such a system

con�guration.

1. INTRODUCTION

In spite of the small vocabulary size isolated digit recogni-

tion over telephone lines is still a challenging task mainly

due to the heavily varying channel and speaker characteris-

tics. As for most speech recognition tasks Continuous Den-

sity Hidden Markov Models are known to be among the

classi�ers that give best performance for this application.

The problem of applying this technique for real world sys-

tems is the high computational load especially for mixture

density modeling. We describe our ongoing e�orts on ex-

ploiting the performance of CDHMMs with particular re-

spect to the memory and computational expense.

Reduction of computational costs is primarily carried out

by simpli�cations applied to the speech modeling techniques

like the use of a smaller number of densities. As discrim-

inative methods are known to be most e�cient in case of

a mismatch between model assumptions and the described

statistic process the use of such methods is appropriate for

the considered systems.

Our most advanced system combines discriminative tech-

niques namely Linear Discriminant Analysis (LDA) and

Minimum Error Classi�cation (MEC) training. In this pa-

per we focus on giving detailed insight into the MEC train-

ing using the General Probabilistic Descent (GPD) method

with respect to the use of LDA giving practical extensions

to this technique.

2. FEATURE EXTRACTION AND LDA

The digitized speech at 8 kHz sampling rate is �ltered us-

ing a preemphasis �lter and a 256 point FFT is applied

every 10 ms to a 25 ms Hamming windowed signal portion.

24 cepstral coe�cients are extracted by convolution of the

logarithmic power spectrum with mel scaled sinc kernels.

To achieve a loudness normalization the mean of these 24

mel cepstral coe�cients is subtracted from every coe�cient.

A Maximum Likelihood based on the 
y cepstral mean re-

moval (MLCC [1]) is applied to this 24 dimensional vector

to compensate for di�erent channel transfer functions. Fur-

ther �rst and second order derivatives of the smoothened

(by the factor 2) 24 coe�cients are added to the feature

vector. Using the high pass �ltered logarithm of the total

frame energy and it's �rst and second derivative we end up

with a 51 dimensional feature vector. Note that all opera-

tions are carried out on the 
y avoiding any normalization

causing processing delays which are prohibitive for real time

processing.

Linear Discriminant Analysis (LDA) [2, 4] is performed

on a super-vector ~y consisting of two 51 dimensional sub-

sequent mel cepstral feature vectors that form an enlarged

vector with 2 � 51 components. So ~y includes more contex-

tual information in time which can help to compensate the

independence assumptions made in �rst order HMMs [3].

The LDA is used to �nd a single transformation matrix A

that maximizes the objective function
sp(SB)

sp(SW )
on the trans-

formed vector ~x = A~y. This objective function is based on

discrimination of classes which are in our case chosen to be

the states of the HMMs.

In a �rst step a decorrelation and a whitening transfor-

mation is performed on the feature space so that the mean

covariance matrix Sw becomes the identity matrix. The

second step of the LDA aims to maximize the class sepa-

rability expressed by tr(SB), the trace of the between class

covariance matrix.

The components of the resulting feature vector ~x are or-

dered with respect to the class discrimination measure. This

allows us to reduce the dimension of ~x. For all experiments

with LDA transformed features we used the �rst 24 compo-

nents of ~x. Due to the reduced size of features vectors the

computational e�ort for the computation of emission prob-

abilities is reduced dramatically without loss of recognition

performance.



3. MODEL TOPOLOGY

Each of the 11 German digit words is modeled by a strict left

to right HMM �i consisting of Si states. Si is chosen propor-

tionally to the mean duration of the speci�c word as seen in

the training corpus. Transition probabilities between states

are not explicitly trained. Instead, the penalty (logarithmic

transformed probability) for a transition to the immediate

succeeding state is 0 while penalties for a self loop and one

state skip are both set to a �xed value T . All other state

transitions are not allowed. Silence and background noise

is modeled by a one state HMM that is only allowed before

or after a digit model. The transition penalty for the self

loop of this state is explicitly set to 0.

4. DENSITY MODELING

Our density modeling is strictly based on the CDHMM ap-

proach, so each density corresponds to one particular mix-

ture. Mixtures of Gaussian densities model the probability

density functions (pdfs) of the HMM states. All covariance

matrices are explicitly set to the identity matrix. As we are

using decorrelated and whitening transformed features this

is closely related to the use of one covariance matrix, that

is tied over all states of the HMMs. As an advantage of this

procedure, we do not consider any variance modeling at the

stage of density modeling.

The probability of one mixture is approximated by the

highest probability of all densities within this mixture. By

this means no summation of probabilities has to be carried

out.

5. PARAMETER ESTIMATION

5.1. ML Parameter Estimation

Mixture densities are �rst initialized using a clustering al-

gorithm to a high number of densities per mixture. In or-

der to reduce the overall number of densities those den-

sities with a low absolute occurrence measure are merged

with their nearest neighbor. This corresponds to a maxi-

mum a-posteriori approach for controlling the the number

of densities per mixture. The mean vectors of the Gaus-

sian densities are reestimated using an iterative Maximum

Likelihood based Viterbi training.

5.2. MEC Parameter Estimation

Using Minimum Error Classi�cation [5] training the recog-

nizer parameters can be adjusted to achieve a local mini-

mum of the word error rate on the training set.

We are using a simpli�ed misclassi�cation measure

di(X;�) for a model �i given a parameter set � and the

feature set X of an utterance

di(X;�) = �gi(X;�i) + max
j 6=i

gj(X;�j)

with the log likelihood score of an utterance given a model

�i : gi(X;�) = log p(Xj�i) [6]. So di is the di�erence be-

tween the scores for a model �i and the best competitive

model.

The misclassi�cation measure is embedded in a sigmoid

function

li(di(X;�)) =
1

1 + e�
di(X;�)

and the objective function is formed as the loss function for

the whole training set fX1; X2; � � �XR
g

l(�) =
1

R

RX

r=1

lC(Xr)(X
r
;�)

where C(Xr) is the correct class corresponding to Xr.

l(�) is a di�erentiable approximation of the error rate on

the training set. Using the General Probabilistic Descend

method model parameters � can be adjusted in order to

minimize this objective function. Parameters are updated

iteratively (iteration index n):

�n+1 = �n � �nUnrl(fX
r
g;�n)

�n is a variable scalar and Un a matrix both used for scaling

the gradient rl. For Un, the use of diagonal matrix con-

taining the variances of feature components is reported to

be useful [5]. Due to the fact that the mean class within

variances of LDA transformed features are all equal we use

the identity matrix for Un.

One of the problems for practical application of the

MEC/GPD method is the adjustment of the estimation pro-

cess. In our case we have to adjust 
, which controls the

form of the sigmoid function, and �n controlling the scaling

of the gradient. In order to �nd a suitable method to ad-

just 
 we take a closer look at the parameter update formula

that can be derived from the above equations.

Viterbi decoding of an utterance with corresponding fea-

ture sequence X provides the log likelihood scores gi(X;�i)

as well as the time alignment of the feature vectors to the

states of the models. Given this information we have to

apply the GPD update to minimize lC(X). Therefore we

have to consider the model for the correct (spoken) word

�J (J = C(X)) as well as the best competitive model �K
with K = argmaxi6=J gi(X;�i).

For the case of one single Gaussian density per state with

the covariance matrix being the identity matrix a simple

and illustrative parameter update formula can be derived:

~̂�s = ~�s +Q �
@l(d)

@d
� (~xt � ~�s)

This formula describes how the mean vector of a state s is

in
uenced by a feature vector ~xt that was aligned to this

state in time frame t. Q is a positive constant for the cor-

rect class and has the same absolute value with a negative

sign for the class CK . This parameter update can be inter-

preted as drawing the densities for the correct class towards

the feature vector while performing the opposite for the in-

correct class (see �gure 1).

The factor
@l(d)

@d
=

@lJ (dJ (X;�))

@dJ (X;�)
controls the scaling of the

di�erence vector for a speci�c X though it only depends

on dC(X)(X;�). Although the above formula only holds for

single densities it can also be applied to mixture densities

using the best density approximation (see section 4.). Given

this approximation this is conform with the MEC/GPD ap-

proach because only the best density of one state for a par-

ticular time frame has in
uence on the objective function.

Figure 2 shows
@l(d)

@d
and a typical histogram for the fre-

quency of values dJ for a �rst MEC training iteration. A
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Figure 1. Illustration of the parameter update
caused by a feature vector ~x in a two dimensional
feature space. ~x was aligned to state 1 belonging to
the correct model and state 2 of an incorrect model.
~�1 is drawn towards ~x while ~�2 is drawn away from
the feature vector.

positive value for dJ stands for a misclassi�cation while a

negative value stands for a correct classi�cation. So the

diagram illustrates how training samples X in
uence the

parameter update according the misclassi�cation measure

dJ . For values of dJ around 0 the in
uence expressed by
@l(dJ )

@dJ
reaches a maximum, while for high values of jdj the

in
uence decreases.

Following the above ideas we propose a heuristic strategy

on the adjustment of the parameter 
: 
 should be set to

such a value that
@l(d)

@d
has fallen to almost 0 for the max-

imum positive values d that occur during training. Such

high values of d can be interpreted as crude misclassi�cation

eventually caused by corrupted utterances which should not

be considered for parameter estimation. Note that hereby


 is not set to a value that gives best correspondence be-

tween the objective function l and the real error rate on

the training patterns. With the applied simpli�ed misclas-

si�cation measure a value 
 ! 1 would provide a perfect

correspondence but the objective function would no longer

be di�erentiable. The idea behind the proposed method is

a compromise between avoiding over-adaptation and con-

sidering as much training material as possible.

It is possible to derive another useful practical extension

from the above considerations: Utterances with extremely

low in
uence on the parameter update during the �rst it-

eration are very unlikely to in
uence training during any

further iteration. Therefore it is not necessary to consider

utterances with
@l(d)

@d
lower than a certain threshold for all

subsequent iterations. It is hereby possible to reduce the

e�ort for MEC/GPD training without loss of accuracy.

We are using a �xed �n = �0 as we did not �nd improved

convergence through a variable �n during the iteration pro-

cess. With an appropriate value for �0 we always observed

fast convergence in less than 10 iterations. For the purpose

of choosing an appropriate value for �0 the standard devi-

ation �r of all accumulated parameter updates during the

�rst iteration is considered. We adjust �0 in such a way

that �r equals a �xed portion of the mean class within de-

viation of the features which equals 1 for LDA transformed

2000 1500 1000 500 0 -500
d

@l(d)
@d

histogram for values of d

Figure 2. (smoothened) histogram for values of d

occurring during �rst MEC iteration and
@l(d)

@d

features.

6. EXPERIMENTS

For all experiments the part of the German Voice Mail

database containing only isolated spoken German digits

(11 words) was used for training and testing. For this

database utterances of 700 speakers from various regions

were recorded over German public telephone lines (includ-

ing cellular phones). Approximately 600 speakers where

selected for training and the remaining 100 for the test set.

The baseline system uses the mel cepstral feature vector

with 51 components without the LDA based feature trans-

formation. In this case the parameters of the densities were

trained using 10 iterations of ML Viterbi training. The use

of 400 Gaussian densities (with uni�ed variance modeling)

lead to 7.4% word errors on the test set. The high error

rate for this systems results basically from the simple den-

sity modeling. The application of more complex modeling

techniques would reduce the gain achieved with LDA quite

a lot.

In all following experiments we used the 24 dimensional

LDA based feature vector.

In order to highlight the importance of the amount of

free parameters for ML and especially MEC training we

performed 3 experiments using a total number 400, 1000

and 2000 Gaussian densities. For each of the 3 recognizer

con�gurations 10 iterations of Maximum Likelihood train-

ing were applied. Taking the ML trained models for initial

parameter sets 10 iterations of MEC/GPD training where

performed.

Figure 3 compares the error rates for Maximum Likeli-

hood and MEC training for the training set as well as for
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Figure 3. comparison of MLE and MEC training
for di�erent numbers of free parameters

the test set.

In the case of ML trained models an increasing number

of densities reduces the error rate on the training set from

4.1% (400 dens.) to 1.8% (1K dens.) and 1.1% (2K dens.).

Looking at the performance of the ML trained recognizer on

the test set one �nds that the use of 1000 densities instead

of 400 reduces the error rate from 4.2% to 2.3%, while using

an other 1000 densities more did not reduce the the errors

on the test set any further.

For the considered con�gurations all error rates achieved

with MEC/GPD training are below those achieved with ML

training. Comparing the results for the three investigated

number of free parameters we �nd similar trends as for ML

training. The error rates on the training set are 0.9%, 0.2%

and 0.1%. On the test set the error rates resulting from

MEC trained models were 2.2% 1.5% and 1.7% for 400,

1000 and 2000 densities. It can be seen that the reduction of

error rate (on the test set ) through discriminative training

decreases with a higher number of parameters from 48%

to 33% and 26%. With the use of 2000 densities the error

rate was even higher in the case of MEC training compared

to the use of 1000 densities. One can assume that over-

adaptation appeared here.

The amount of free parameters of the best performing

system (LDA based features, 1000 densities, MEC training)

is almost the same as for the baseline system which uses the

mel cepstral feature vector without LDA based transforma-

tion and MEC training. The reduction of word errors at

comparable computational costs is 80%.

7. CONCLUSION

We successfully applied two discriminative training tech-

niques to a CDHMM based isolated digit recognizer achiev-

ing high recognition performance using limited memory and

computational resources.

A linear feature transformation based on a LDAmaximiz-

ing a class discrimination measure with the classes being the

states of HMMs was applied to a high dimensional speech

representation containing a high amount of contextual (dy-

namic) information. The resulting feature vector o�ers a

compact representation of the speech signal with the prac-

tical advantage of decorrelated and variance whitened com-

ponents. The latter attributes allow the use of modeling

techniques with reduced complexity and result in simpli�ed

parameter estimation procedures.

The MEC/GPD method is applied to reestimate the pa-

rameters of a HMM classi�er using the LDA transformed

features. The approach leads to quite simple and illustra-

tive parameter update expressions in case of the applied

model assumptions. Data driven considerations are found

to provide methods for easy adjustment of the estimation

process.

In experiments that use di�erent numbers of parame-

ters discriminative training methods perform best in the

case of a high ratio between training samples and free pa-

rameters. Over-adaptation of the recognizer on the train-

ing samples is a severe problem that has to be considered

here. A recognizer con�guration that uses only 400 Gaus-

sian densities was found to perform better when trained

with the MEC/GPD method than a ML trained system

with 1000 densities. Using the same amount of free param-

eters MEC/GPD training lead to reduction of the error rate

up to 48%.
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