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ABSTRACT

Acoustic mismatch between training and test environ-
ments is one of the major problems in telephone-based
speaker recognition. Speaker recognition performances
are degraded when an HMM trained under one set of
conditions is used to evaluate data collected from dif-
ferent telephone channels, microphones, etc. The mis-
match can be approximated as a linear transform in a
cepstral domain. In this paper, we present a fast, e�-
cient algorithm to estimate the parameters of the linear
transform for real-time applications. Using the algo-
rithm, test data are transformed toward the training
conditions by rotation, scale, and translation without
destroying the the detailed characteristics of speech,
then, speaker dependent HMM's can be used to eval-
uate the details under the same condition as train-
ing. Compared to cepstral mean subtraction (CMS)
and other bias removal techniques, the proposed linear
transform is more general since CMS and others only
consider translation; compared to maximum-likelihood
approaches for stochastic matching, the proposed algo-
rithm is simpler and faster since iterative techniques
are not required. The proposed algorithm improves
the performance of a speaker veri�cation system in the
experiments reported in this paper.

1. INTRODUCTION

For speaker recognition, a speaker-dependent hidden
Markov model (HMM) for a true speaker is usually
trained based on training data collected in one enroll-
ment session. The HMM, therefore, matches the prob-
ability density function (pdf ) of the training data per-
fectly. In a veri�cation session, test data are very of-
ten collected through a di�erent telephone channel and
handset. Since the acoustic condition is di�erent from
the enrollment session, it usually causes a mismatch
between the test data and the trained HMM. Speaker
recognition performance is degraded by the mismatch.

The mismatch can be represented as a linear trans-
form in the cepstral domain:

y = Ax+ b; (1)

where x is a vector of the cepstral frame of a test utter-
ance; A and b are the matrix and vector which need to
be estimated for every test utterance; and y is a trans-
formed vector. Geometrically, b represents a transla-
tion and A represents both scale and rotation. When
A is diagonal, it is only a scaling operation. An anal-
ysis of the reason for using a linear transformation is
beyond the scope of this paper. Interested readers are
referred to [1].

Cepstral mean subtraction (CMS) is a fast, e�cient
technique for handling mismatch in both speaker and
speech recognition. It estimates b and assumes A to
be an identity matrix. In [2], the vector b was esti-
mated by long term average, short term average, and
a maximum likelihood approach. In [3, 4], maximum
likelihood (ML) approaches were used to estimate b,
a diagonal A, and model parameters for HMM's for
stochastic matching. Very recently, a least-squares so-
lution of the linear transform parameters was briey
introduced in [1].

In this paper, we consider a general linear trans-
form, i.e. A is a full matrix, and b is a vector. The
approach is to have the overall distribution of test data
match the overall distribution of training data. Then
a speaker dependent (SD) HMM trained on the train-
ing data is applied to evaluate the details of the test
data. This is based on the assumption that di�erences
between speakers are mainly on the details which have
been characterized by HMM's. The associated fast al-
gorithm for real-time applications is also given in this
paper. Compared to CMS and other bias removal tech-
niques [2, 5], the proposed linear transform is more
general since CMS and others only consider the trans-
lation; compared to the ML approaches [2, 5, 3, 4],
the algorithm is simpler and faster since iterative tech-
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Figure 1: A geometric interpretation of the fast
stochastic matching.

niques are not required and the estimation of the lin-
ear transform parameters is separated from the HMM
training and test.

2. THE CONCEPT OF THE FAST
STOCHASTIC MATCHING

We use Fig. 1 as a geometric interpretation of the pro-
posed matching algorithm. In Fig. 1 (a), the dashed
line is a contour of training data. In Fig. 1 (b), the
solid line is a contour of test data. Due to di�erent
channels, noise levels, and telephone transducers, the
mean of the test data is translated from the training
data; the distribution is shrunk [6] and rotated from the
HMM training condition. The mismatch may cause a
wrong decision when using the trained HMM to score
the mismatched test data. By applying the proposed
algorithm, we �rst �nd a covariance matrix, Rtrain,
from the training data which characterizes the overall
distribution approximately. Then, we �nd a covariance
matrix, Rtest, from the test data and estimate the pa-
rameters of theAmatrix for the linear transform in (1).
After applying the �rst transform, the overall distribu-
tion of the test data is scaled and rotated, ARtestA

T ,
to be same as the training data except for the di�er-
ence of the means, as shown in Fig. 1 (c). In the second
step, we �nd the di�erence of the means, and translate
the test data to the same location of the training data
as shown in Fig. 1 (d), where the contour of the trans-

formed test data is overlapped to the contour of the
training data.

If the test data from a true speaker mismatch the
HMM training condition, the data will be transformed
to match the trained HMM approximately. If the test
data from a true speaker match the training condition,
the calculated A and b are close to an identity matrix
and a zero vector respectively, so the transform will not
e�ect the HMM scores much.

This technique attempts to improve mismatch
whether the mismatch occurs because test and train-
ing conditions di�er or because the test and training
data originate from di�erent speakers. It is reason-
able to suppose that speaker characteristics are found
mainly in the details of the representation. However, to
the extent that they are also found in global features,
this technique would increase the matching scores be-
tween true speaker models and imposter test utter-
ances. Performance, then, could possibly degrade par-
ticularly when other sources of mismatch are absent,
that is, when test and training conditions are actually
matched. However, experiments in this paper will show
that performances overall do improve.

3. FAST ESTIMATION FOR A GENERAL
LINEAR TRANSFORM

In a speaker veri�cation training session, we collect
multiple utterances with the same content, and use a
covariance matrixRtrain, a mean vector mtrain to rep-
resent the overall distribution of the training data of
all the training utterances in a cepstral domain. They
are de�ned as follows:

Rtrain =
1

U

UX

i=1

1

Ni

NiX

j=1

(xi;j �mi)(xi;j �mi)
T ; (2)

and

mtrain =
1

U

UX

i=1

mi; (3)

where xi;j is the jth non-silence frame in the ith train-
ing utterance, U is the total number of training utter-
ances, Ni and mi are the total number of non-silence
frames and the mean vector of the ith training utter-
ance respectively, and mtrain is the average mean vec-
tor of the non-silence frames of all training utterances.

In a test session, only one utterance will be collected
and veri�ed at a time. The covariance matrix for the
test data is

Rtest =
1

Nf

NfX

j=1

(yj �mtest)(yj �mtest)
T ; (4)



where yj and mtest are a non-silence frame and the
mean vector of the test data, Nf is the total number
of non-silence frames.

The proposed criterion for parameter estimation is
to have Rtest match Rtrain through a rotation, scale,
and translation (RST) of the test data. For rotation
and scale, we have the following equation.

Rtrain �ARtestA
T = 0; (5)

where A is de�ned as in (1); Rtrain and Rtest are de-
�ned as in (2) and (4). By solving (5), we have the A
matrix for (1),

A = R
1

2

trainR
�

1

2

test: (6)

Then, the translation term b of (1) can be obtained by

b = mtrain �mrs = mtrain �

1

Nf

NfX

j=1

Axj (7)

where mtrain is de�ned as in (3); mrs is a mean vector
of rotated and scaled frames; Nf is the total number
of non-silence frames of a test utterance; xj is the jth
cepstral vector frame.

To verify a given test utterance against a set of true
speaker's models (consisting of a SD HMM plus Rtrain,
mtrain), �rst Rtest, A and b are calculated by using (4),
(6), and (7), then all test frames are transformed by (1)
to reduce the mismatch.

4. GENERAL PHRASE SPEAKER
VERIFICATION

The above stochastic matching algorithm has been ap-
plied to a text-dependent speaker veri�cation system
using general phrase passwords. The system was de-
scribed by Parthasarathy and Rosenberg in [7]. Stochas-
tic matching is included in the front-end processing
to further improve the system robustness and perfor-
mance.

The system block diagramwith stochastic matching
is shown in Fig. 2. After a speaker claims an identity
(ID), the system expects the same phrase obtained in
the associated training session. First, a speaker in-
dependent (SI) phone recognizer segments the input
utterance into a sequence of phones by forced decod-
ing using the transcription saved from the enrollment
session. Since the SD models are trained on a small
amount of data from a single session, they can't be
used to provide a reliable and consistent phone seg-
mentations. So the SI phone models are used. On
the other hand, the cepstral coe�cients of the utter-
ance from the test speaker is transformed to match the
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Figure 2: A phrase-based speaker veri�cation system
with stochastic matching

training data distribution by computing Eqs. (4), (6),
(7), and (1). Then, the transformed cepstral coe�-
cients, decoded phone sequence, and associated phone
boundaries are transmitted to a veri�er. In the veri�er,
a log-likelihood-ratio score is calculated based on the
log-likelihood scores of target and background models.

LR(O; �t; �b) = L(O;�t)� L(O;�b) (8)

where O is the observation sequence over the whole
phrase, and �t and �b are the target and background
models respectively. The background model is a set of
HMM's for phones. The target model is one HMM with
multiple states for whole phrase. As reported in [7], this
con�guration provides the best results in experiments.
Furthermore,

L(O;�t) =
1

Nf

P (Oj�t); (9)

where P (Oj�t) is the log-likelihood of the phrase evalu-
ated by one HMM, �t, using Viterbi decoding, and Nf

is the total number of non-silence frames in the phrase.

L(O;�b) =
1

Nf

NpX

i=1

P (Oij�bi) (10)

where P (Oij�bi) is the log-likelihood of the ith phone,
Oi is the segmented observation sequence over the ith
phone, �bi is an HMM for the ith phone, Np is the
total number of the decoded non-silence phones, and
Nf is the same as above.

A �nial decision on rejection or acceptance is made
based on the LR score with a threshold. If a signif-
icantly di�erent phrase is given, the phrase could be
rejected by the SI phone recognizer before using the
veri�er.



5. FEATURES AND DATABASE

The feature vector in this paper is composed of 12 cep-
strum and 12 delta cepstrum coe�cients. The cep-
strum is derived from a 10th order LPC analysis over
a 30 ms window. The feature vectors are updated at
10 ms intervals.

The experimental database consists of �xed phrase
utterances recorded over the long distance telephone
networks by 100 speakers, 51 male and 49 female. The
�xed phrase, common to all speakers, is \I pledge alle-
giance to the ag" with an average length of 2 seconds.
Five utterances of each speaker recorded in one session
are used to train a SD HMM plus Rtrain, mtrain for
the linear transform. For testing, we used 50 utter-
ances recorded from a true speaker at di�erent sessions
(di�erent telephone channels at di�erent times), and
200 utterances recorded from 50 impostors of the same
gender at di�erent sessions. For model adaptation, the
second, fourth, sixth, and eighth test utterances from
the tested true speaker are used to update the associ-
ated HMM plus Rtrain, mtrain for verifying succeeding
test utterances.

The target models for phrases are left-to-right
HMM's. The number of the states are 1.5 times the to-
tal number of phones in the phrases. There are 4 Gaus-
sian components associated with each state. The back-
ground models are concatenated phone HMM's trained
on a telephone speech database from di�erent speak-
ers and texts. Each phone HMM has 3 states with 32
Gaussian components associated with each state.

Due to unreliable variance estimates from limited
amount of training data, a global variance estimate is
used as a common variance to all Gaussian components
[7] in the target models.

6. EXPERIMENTAL RESULTS

The experimental results are listed in Table 1. These
are the averages of individual equal-error rates over
the 100 evaluation speakers. The baseline results are
obtained with log-likelihood-ratio scores using phrase-
based target model and phone-based speaker back-
ground models. The equal-error rates (EER's) without
and with adaptation are 5.98% and 3.94% respectively.
When using CMS, the EER's are 3.03% and 1.96%.
When using the proposed algorithm (RST), the equal
error rates are 2.61% and 1.80%.

7. CONCLUSIONS

A simple, fast and e�cient algorithm for stochastic
matching has been presented. The algorithm is ap-

Table 1: Experimental Results in Average Equal-
Error Rates (%)
Algorithms No Adaptation With Adaptation
Baseline 5.98 3.94
CMS 3.03 1.96
RST(proposed) 2.61 1.80

plied to a general phrase speaker veri�cation system.
In the experiments, when there is no model adapta-
tion, the proposed algorithm improves equal-error rates
by 56% compared with a baseline system without any
stochastic matching, and 14% compared with a sys-
tem using CMS. When model adaptation is applied,
the improvements are 54% and 8%. Less improvement
is obtained because the SD models are updated to �t
di�erent acoustic conditions. The proposed algorithm
can also be applied to speaker identi�cation and other
applications to improve system robustness.
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