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ABSTRACT

We introduce a new Bayesian predictive classi�cation (BPC)
approach to robust speech recognition and apply the BPC
framework to Gaussian mixture continuous density hidden
Markov model based speech recognition. We propose and
focus on one of the approximate BPC approach called quasi-
Bayesian predictive classi�cation (QBPC). In comparison
with the standard plug-in maximum a posteriori decoding,
when the QBPC method is applied to speaker independent
recognition of a confusable vocabulary, namely 26 English
letters, where a broad range of mismatches between train-
ing and testing conditions exist, the QBPC achieves around
14% relative recognition error rate reduction. While the
QBPC method is applied to cross-gender testing on a less

confusable vocabulary, namely 20 English digits and com-
mands, the QBPC method achieves around 24% relative
recognition error rate reduction.

1. INTRODUCTION

In this paper, we introduce a newBayesian predictive classi-

�cation (BPC) approach to robust speech recognition. The
conventional plug-in maximum a posteriori (MAP) deci-
sion rule is known to achieve an optimal Bayes decision
if the assumed models and parameters of the rule were cor-
rect. However, in real world situations, we rarely have the
full knowledge about the nature of the classi�cation data
to warrant optimal decisions. Furthermore, we often en-
counter situations in which mismatches between training
and testing conditions exist but an accurate knowledge of
the mismatch mechanism is unknown. The only available
information is the test data along with the given MAP de-
cision rule and the decision parameters. Some recent ap-
proaches have focused on modifying the decision rule and
the model parameters so that part of the mismatch can
be compensated and the decision performance can be im-
proved. One such approach is the minimax classi�cation al-
gorithm [5] which assumes the best decision parameters for
the given test data lie in the neighborhoods of the given pa-
rameters and adjusts the decision rule and the correspond-
ing parameters accordingly. The minimax classi�cation is
thus geared to protect against the possibility of the worst
mismatch.
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The proposed BPC framework improves upon the con-
servative minimax classi�cation approach by taking into ac-
count some prior knowledge about the given plug-in deci-
sion rule and parameters. We apply the proposed BPC
framework to hidden Markov model (HMM) based speech
recognition. Speci�cally, we model each speech unit with a
continuous density HMM (CDHMM) in which each HMM
state is characterized by a mixture of multivariate Gaus-
sian densities. Because of the nature of the missing-data

problem caused by the underlying hidden processes of a
CDHMM, it is not easy to compute the predictive density

required in designing the BPC-based decision rules. To cir-
cumvent these di�culties we introduce two approximation
procedures. The �rst one, called quasi-Bayesian predictive

classi�cation (QBPC), is based on the quasi-Bayesian ap-
proximation of the posterior probability density function
(PDF) [1] to compute the predictive densities. The second
one, called Viterbi BPC (VBPC), uses the joint predictive
PDF of the observation sequence, the most likely state and
mixture component sequences to approximate the predic-
tive density. Details of the VBPC formulation and a case
study on robust speaker independent recognition of isolated
and connected digits in noise are given in a companion pa-
per [3] for this conference. In this paper, we focus our study
on the theoretical and implementation issues related to the
QBPC approach. The viability of the techniques is con-
�rmed in a series of comparative experiments using a 26-
word English alphabet vocabulary and a 20-word English
digit & command vocabulary.

2. BAYESIAN PREDICTIVE CLASSIFICATION

Let's view a word W and the associated acoustic obser-
vation X (usually, a feature vector sequence) as a jointly
distributed random pair (W;X). Depend on the problem of
interest, word here could be any linguistic unit, such as a
phoneme, a syllable, a word, a phrase, etc. Also note that
for notational simplicity, in this paper, we always use the
same symbol to denote both the random variable and the
value it may assume. Suppose the true joint distribution
of (W;X) could be modeled by a true parametric family

of PDF p(W;X) = p�(XjW ) � p�(W ), where p�(XjW ) is
known as acoustic model with parameters � and p�(W )
as language model with parameters �. Further suppose
we have the full knowledge of the parameters (�;�) of the



above distributions. Then, an optimal decoder (speech rec-
ognizer) which achieves expected minimum word recognition
error rate is the following MAP decoder:

Ŵ = argmax
W

p(W jX) = argmax
W

p�(XjW ) � p�(W ) (1)

whereX is the observation and Ŵ is the recognition result.
However, in practice, neither do we know the true para-
metric form of p(W;X), nor its true parameters. Therefore,
the above optimal speech recognizer will never be achiev-
able, but we can only approximate it. A simple heuristic
solution is �rst to assume some parametric form for p(W;X)
and then to estimate its parameters from some training data
by using some parameter estimation techniques (e.g., max-
imum likelihood (ML), MAP, discriminative training, etc.).

Then, we plug in the estimate (~�; ~�) into the optimal but
unavailable rule in equation (1) in place of the correct but
unknown (�;�) to obtain a plug in MAP rule. The per-
formance of any such nonconservative rule depends on the
accuracy of the model assumptions, the choice of parame-
ter estimation methods, the nature and size of the training
data, and the degree of the mismatch between training and
testing conditions. It is the last issue that motivates the
consideration of other more conservative decision strategies.

According to the nature of the problem as stated at the
beginning of the paper, one way to achieve performance
robustness in unknown mismatch case is to adopt the mini-

max principlewhose essence is to try and protect against the
worst possible state of nature. Thus, minimax classi�cation
is the most conservative decision strategy. A case study of
minimax classi�cation for robust digit speech recognition
was presented in [5]. In that study, a speci�c paramet-
ric uncertainty neighborhood surrounding the ML-trained
HMM parameters was de�ned. The HMM parameters are
assumed to have a uniform distribution in that neighbor-
hood. So, the resulting minimax decision rule is equivalent
to the plug in MAP rule in which the HMM parameters of
each speech unit are replaced with their on-line constrained
ML estimates from the testing utterance itself. Minimax
strategy try to secure the decision in the worst case, thus
usually do not perform nearly as well as in a less malign
situation and/or those techniques which use some prior in-
formation of the possible mismatches.

A compromise between risky plug in MAP rule and
overduely conservative minimax approach is a decision strat-
egy which can somehowmake use of the prior knowledge (al-
beit crude) about the possible mismatch, and at the same
time take into account its uncertainty to plan accordingly
for the possible severe mismatch. It is such an approach
called Bayesian predictive classi�cation approach that this
paper focuses on. Suppose only acoustic models are ad-
justed in this study. We use a prior PDF p(�j') to repre-
sent our knowledge about the uncertainty of the unknown
parameters � (e.g. [1]). An optimal Bayes solution is
to choose a speech recognizer which minimizes the over-

all recognition error when the average is taken both with
respect to the sampling variation in the expected testing
data and with respect to the uncertainty described by the
prior distribution. Such a BPC rule is operated as follows:

Ŵ = argmax
W

~p(W jX) = argmax
W

~p(XjW) � p�(W ) (2)

where

~p(XjW ) =

Z
p(Xj�;W )p(�j';W )d� (3)

is called the predictive PDF of the observation X given the
word W . The computation of this predictive PDF is the
most di�cult part of the BPC procedure. The crucial dif-
ference between the plug-in and predictive classi�ers is that
the former acts as if the estimated model parameters were
the true ones whereas predictive methods average over the
uncertainty in parameters. We wish to draw the reader's
attention to the work in [6] and [4]. We are actually us-
ing a very similar formulation as Nadas did in [6]. He was
using a posterior PDF p(�jX ) derived from a training set

X to serve as the prior PDF in predictive decision making
and gave a simple example in which reproducing density ex-
isted. We start up where Nadas [6] left o�, with an empirical

Bayes method in which a speci�c parametric PDF p(�j')
is adopted to represent the prior PDF of the CDHMM pa-
rameters. Its hyperparameters ' could be estimated from
some training data, or speci�ed based on some empirical
reasoning, or their combination [1]. We then use di�erent
approximation methods discussed in next section to com-
pute the approximate predictive PDF and use the BPC rule
in equation (2) to perform recognition. We can actually go
one step further. By combing such decision strategy with
the on-line model adaptation strategy [1, 2] to continuously
update our prior knowledge about the uncertainty of the
model parameters, we can approach a performance achieved
by the plug-in MAP rule under a matched condition. Al-
though Merhav and Ephraim [4] also started with Nadas's
formulation, they �nally used another so-called approximate

Bayesian decision rule which was based on the generalized
likelihood ratios computed from the available training and
testing data.

3. APPROXIMATE BPC APPROACHES

In the CDHMM case, we have no closed form solution for
the computation of the predictive PDF ~p(XjW ). One way
to compute an approximate predictive PDF is to use the
Monte Carlo method. We can use the Monte Carlo simula-
tion of the hidden processes (state sequence and mixture la-
bel sequence) of the CDHMM and then perform integration
and averaging. We can also perform a double-fold Monte
Carlo simulation of both the hidden processes and the HMM
parameters, and then perform only averaging. Because it's
computationally expensive, the Monte Carlo method has
only of academic interest in the stage of performing speech
recognition.

Another way to compute the approximate predictive
PDF is to use the following Laplace method for integrals:

~p(XjW ) � p(Xj�MAP ;W )�p(�MAP j';W )�(2�)M=2 �jV j1=2

(4)
where �MAP = argmax

�

p(Xj�;W )p(�j';W ),M is the num-

ber of HMM parameters involved in the integrand in equa-
tion (3), and V is the M�M modal dispersion matrix,
i.e., �V �1 is the Hessian matrix of second derivatives of
logfp(Xj�;W )p(�j';W )g evaluated at � = �MAP . This
approximation is also known as the normal approximation



method in Bayesian community, because we are equiva-
lently using a normal PDF N (�;�MAP ; V ) to approximate
the posterior PDF p(�jX;W ). To compute V directly is
still too computationally involved. So, we have to make
further approximation. If we only consider the uncertainty
of the mean vectors in CDHMM, we can use the QB al-
gorithm in [1] or [2] to compute an approximate posterior

PDF N (�;�MAP ;
~V ) and then replace V in equation (4)

with ~V . We thus name the resultant BPC rule as QBPC
rule.

A third way to compute the approximate predictive
PDF is to use the following Viterbi approximation:

~p(XjW) � max
s;l

Z
p(X; s; lj�;W )p(�j';W )d� (5)

where s is the unobserved state sequence and l is the associ-
ated sequence of the unobserved mixture component labels
corresponding to the observation sequence X. A detailed
algorithm to implement the above approximation is pre-
sented in another paper [3]. The resultant BPC rule is
called VBPC rule.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

Two sets of speech recognition experiments are designed
to examine the viability of the proposed QBPC algorithm.
The �rst one is the recognition of 26 English letters which
are highly confusable and their discrimination is weak even
without mismatch. Two severely mismatched databases
namely the OGI ISOLET and TI46 corpora were used [1].
For speaker independent (SI) training and initial prior den-
sity estimation, the OGI ISOLET database produced by
150 speakers was used. For SI testing, the alphabet subset
of the TI46 isolated word corpus produced by 16 speak-
ers was used. Each person utters each of the letters 26
times. Among them, 8 of them were used for testing. Due
to the strong mismatch between the training and testing
databases, we are e�ectively considering the general mis-
match conditions of those in speaker, transducer, recording
environments and conditions, sampling rate and quantiza-
tion resolution, etc. For the second set of experiments, task
is the recognition of 20 less confusable English words which
include 10 digits and 10 commands namely enter, erase, go,

help, no, rubout, repeat, stop, start, yes. 20 English words
subset (TI20) of the TI46 corpus was used. We train 2
sets of gender-dependent models (both CDHMMs and their
initial prior PDFs) from 8 female and 8 male speakers by
using about 10 training tokens per word for each speaker.
We then perform cross-gender testing (testing on 8 female
speakers by using male seed models and vice versa) by using
about 16 tokens per word for each speaker.

Throughout the following experiments, each word is
modeled by a left-to-right 5-state CDHMM with arbitrary
state skipping and each state has 4 Gaussian mixture com-
ponents with diagonal covariance matrices. The speech
data in both corpora are down-sampled to 8 KHz. Each fea-
ture vector consists of 12 LPC-derived cepstral coe�cients
and utterance-based cepstral mean subtraction (CMS) is

Table 1: Performance (word accuracy in %) comparison
averaged over 8 female speakers of plug-in MAP, QBPC and
minimax rules on English letter recognition task (rf = 1:0)

number of Decoding Methods
EM iterations plug-in QBPC minimax

1 49.1 53.7 52.0
2 N/A 55.1 49.6
3 N/A 56.2 48.2

Table 2: Performance (word accuracy in %) comparison
averaged over 8 female speakers on English letter recogni-
tion task by operating QBPC rule under di�erent values of
refreshing coe�cient and numbers of EM iteration

number of Refreshing Weights
EM iterations 2.0 1.5 1.0 0.75 0.5

1 52.9 53.2 53.7 54.1 53.3
2 54.3 54.5 55.1 55.0 53.5
3 54.8 55.3 56.2 55.5 53.6

applied for acoustic normalization both in training and test-
ing. The initial hyperparameters are estimated by using
the method described in [1] where we normalize the impor-
tance of the initial prior knowledge to be comparable with
the contribution from a single training token. In QBPC de-
coding, we can further set the refreshing coe�cient rf (see
[1] for the explanation) of the hyperparameters to control
the degree of the uncertainty of the CDHMM parameters,
where rf = 1 means no change, rf > 1 means to decrease
the uncertainty of the HMM parameters (i.e., to trust more
the current estimate of the HMM parameters), and rf < 1
means to increase the uncertainty of the HMM parameters.
Note that in this study we only consider the uncertainty of
the mean vectors of CDHMMs which is characterized by a
set of Gaussian PDFs.

4.2. English Letter Recognition Results

Table 1 compares, the averaged recognition accuracy over
8 female speakers of the standard plug-in MAP decision
rule to that of the QBPC and a modi�ed minimax method
with di�erent EM iterations on SI English letter recognition
task. For the minimax method adopted in this study, we
just use p(Xj�MAP ;W ) in equation (4) to approximate the
predictive PDF. In comparison with [5], we are using a more
informative prior here instead of a uniform distribution in
an uncertainty neighborhood surrounding the ML-trained
HMM parameters. The experimental results show that the
QBPC is achieving the best performance with around 14%
relative recognition error rate reduction over that of the
standard plug-in method.

Table 2 compares, the averaged recognition accuracies
over 8 female speakers on English letter recognition task by
operating QBPC rule under di�erent values of refreshing
coe�cient and di�erent numbers of EM iteration. It turns
out that in a reasonably wide range of values of the control
parameters, the QBPC method achieves improvement over
that of conventional plug-in MAP method.



Table 3: Performance (word accuracy in %) comparison av-
eraged over 8 male speakers on TI20 word recognition task
by using female seed models and operating QBPC rule un-
der di�erent values of refreshing coe�cient and numbers of
EM iteration (the recognition rate is 40.5% by using stan-
dard plug-in method)

number of Refreshing Weights
EM iterations 2.0 1.5 1.0 0.5 0.25

1 47.9 49.4 51.5 54.4 53.7
2 49.3 50.7 52.4 54.3 53.9
3 49.7 51.4 53.5 54.6 54.9

Table 4: Performance (word accuracy in %) comparison av-
eraged over 8 male speakers on TI20 word recognition task
by using male seed models and operating QBPC rule under
di�erent values of refreshing coe�cient and numbers of EM
iteration (the recognition rate is 98.4% by using standard
plug-in method)

number of Refreshing Weights
EM iterations 2.0 1.5 1.0 0.5 0.25

1 97.8 97.5 97.5 96.9 95.7

2 97.6 97.5 97.2 96.1 94.0
3 97.5 97.5 97.2 95.9 93.6

4.3. Experimental Results on TI20

Table 3 compares, the averaged recognition accuracies over
8 male speakers on TI20 word recognition task by using fe-
male seed models and operating QBPC rule under di�erent
values of refreshing coe�cient and di�erent numbers of EM
iteration. The similar facts as the above are also observed
here and the QBPC method achieved around 24% relative
recognition error rate reduction over that of the standard
plug-in method.

To examine the behavior of the QPBC method under
the matched condition, we listed in Table 4 the experimen-
tal results averaged over 8 male speakers on TI20 word
recognition task by using the male seed models. The results
show that the QBPC method holds up the performance or
only degrades slightly in matched training/testing condition
under a reasonably wide range of control parameters.

5. DISCUSSION AND CONCLUSION

In this paper, we start with a revisit to the statistical for-
mulation of the speech recognition problem, take a critical
view of the two existing recognition strategies, namely plug-
in MAP and minimax, and �nally introduce a new deci-
sion strategy called Bayesian predictive classi�cation for ro-
bust speech recognition where unknown mismatch between
training and testing conditions exists. More speci�cally, we
propose and focus on one of the approximate BPC approach
called QBPC and show how it leads to considerable reduc-
tion of the error rate over the standard nonrobust scheme
via a series of comparative experiments. The QBPC algo-
rithm is relatively simple to implement and no big increase
of the computational complexity. Generally speaking, in the

case of less confusable vocabulary where the speech mod-
els are distinct enough and the mismatch is not so severe,
to use a less informative prior distribution such as the uni-
form distribution we adopted in [3] will not cause any prob-
lem. On the other hand, it might even be bene�cial when
the mismatch neighborhood described by this prior distri-
bution happens to be consistent with the real mismatch
which is the case for additive Gaussian white noise in our
study in [3]. So the e�ect of the VBPC decoding in [3]
is especially pronounced in our experiments. However, the
absolute recognition rate after QBPC or VBPC decoding in
severely mismatched case is still far inferior to that of the
matched testing results. How to bridge this performance
gap is still a challenging topic for further research. If the
application involves a recognition session which might con-
sists of a number of testing utterances, then a combined
BPC decoding and on-line adaptation of the HMM param-
eters will provide a good solution to enhance the robust-
ness towards varying environments, microphones, channels,
speakers, and other general mismatches or distortions. We
will report those results elsewhere. We are also checking
how the QBPC method works in other mismatch condi-
tions such as di�erent type of additive noises. More the-
oretical work is needed to include the uncertainty of the
other HMM parameters than mean vectors into the QBPC
framework. It will also be interesting to explore the possi-
bility of applying BPC framework to utterance veri�cation
problem. As a �nal remark, like minimax, QBPC will en-
counter some di�culties while extending to the continuous
speech recognition problem, but it can be easily operated
under an N-best hypothesises re-scoring mode.
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