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ABSTRACT

We propose new techniques for natural quality variable rate
spectral speech coding at an average rate of 2.2 kbps for di-
alog speech and 2.8 kbps for monolog speech. The coder
models the Fourier spectrum of each frame and it builds on
recent enhancements to the classical multiband excitation
(MBE) approach. New techniques for robust pitch estima-
tion and tracking, for e�cient quantization of voiced and
unvoiced spectra and encoding of partial phase information
are the key features that result in improved quality over ear-
lier spectral vocoders. Subjective performance results are
reported which show that the coder is very close in quality
to the ITU-T G.723.1 algorithm at 5.3 kbps.

1. INTRODUCTION

In this paper, we propose several new techniques for e�-
cient low bit rate spectral speech coding. We improve upon
recent enhancements of the classical multiband excitation
(MBE) paradigm of speech coding [1], in terms of natu-
ralness of decoded speech quality, smoothness of pitch pe-
riod tracking, rate-distortion performance of spectral shape
vector (SSV) quantization, computational complexity and
storage requirements. The new techniques are used to de-
sign a variable rate spectral speech coder which operates at
an average bit rate of approximately 2.8 kbps for monolog
speech and 2.2 kbps for dialog (conversational) speech. It
requires a maximum bit rate of 3.9 kbps for encoding voiced
speech frames and a minimum of 1.25 kbps for encoding
silence frames. Listening tests indicate that this coder is
nearly equivalent to the ITU-T G.723.1 coder operating at
the much higher rate of 5.3 kbps.

Many speech coders in the 2.0-4.0 kbps rate range have
evolved from the MBE coding paradigm in recent years.
These include coders due to Nishiguchi et al [2], Hassanien
et al. [3], Yeldener et al. [4], Das and Gersho [5], [6], and
Wang et al. [7]. An improved multiband excitation (IMBE)
voice coder became the satellite communication standard in
1991 as the Inmarsat-M voice codec with a source coding
rate of 4.15 kbps [8]. Our proposed spectral coder draws
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Figure 1: The overall analysis structure of the coder. Pitch,
P0, voicing vector, V, spectral shape vector, M, and phase
vector, �, are the parameters that are encoded.

several features from the enhanced multiband excitation
(EMBE) voice coder of Das and Gersho [9] which has im-
proved upon the Inmarsat-M standard to provide compa-
rable or better speech quality in the range of 1.8-2.9 kbps.
We adopt a multimodal analysis scheme as in the EMBE
coder. New features of our coder include (1) a robust pitch
estimation and tracking algorithm, (2) use of a proposed re-
duced dimension VQ (RDVQ) technique for spectral shape
VQ for voiced frames and a cepstral representation scheme
for unvoiced and silence frames, and (3) encoding of a par-
tial phase information term. These features of the coder
and its performance comparison results are discussed in the
following sections.

2. PREPROCESSING AND CLASSIFICATION

Figure 1 shows the analysis algorithm of the proposed vari-
able rate spectral coder. The model parameters which are
encoded once every frame-length of 20 ms are the pitch pe-
riod, the voiced character across spectral bands, the spec-
tral or cepstral magnitudes and phase at lower harmonics
of the estimated pitch frequency in voiced bands for certain
frames.

The speech signal is �rst high pass �ltered to remove
very low frequency artifacts which are not perceptually rel-
evant and may impede the performance of the pitch esti-
mation algorithm and the spectral shape vector quantizer.



The voice activity detector (VAD) makes a binary decision,
silence or speech, based on both the time and frequency en-
ergy distributions of the current speech frame and is based
on the VAD of Srinivasan and Gersho [10]. If the VAD de-
tects active speech for the current frame, the active speech
classi�er block classi�es the frame further as either voiced
or unvoiced. This analysis preclassi�es the current speech
frame into silence (including a background noise condition),
voiced, or unvoiced and serves two important purposes.
First, it prevents misclassi�cation of unvoiced and voiced
segments for the analysis of the spectral coder, and second,
it introduces a convenient multimode structure over which
to build a variable bit rate coder.

3. PITCH PERIOD ESTIMATION AND ITS

PERFORMANCE EVALUATIONS

Accurate pitch period estimation is a critical task in spec-
tral or sinusoidal coders. Most pitch related errors are
caused by incorrectly estimating a multiple or submultiple
of the true pitch period, instead of the true one. We pro-
pose a new pitch tracking technique that introduces strong
smoothness constraints around an average pitch value which
is updated adaptively over voiced frames, and uses only one
frame look ahead.

The pitch estimation, tracking and re�nement is per-
formed with an autocorrelation based error function E(p),
derived by Gri�n and Lim ([1], pp. 1227, equation (11)).
The pitch, Pk, for the current frame is determined in the
range of 21 to 114 samples with half-sample accuracy, and
uses �nalized pitch values Pk�1 and Pk�2 of the previous
two frames and the initial pitch estimate, P i

k+1, of the fu-
ture frame. The pitch estimation and tracking steps are as
follows:

1. Determination of the future frame's initial pitch esti-
mate, P i

k+1, using the corresponding pitch error func-
tion, Ek+1(p),

2. Estimation of the current frame's initial pitch value,
P 0

k
, using smoothness constraints (note that P 0

k
6=

P i

k
),

3. Corrections in P 0

k
by checking for submultiple pitch

candidates, to obtain �nal pitch estimate Pk for cur-
rent frame.

The �rst step determines a pitch candidate for the fu-
ture frame in each of three distinct sets: f21; 21:5; : : : ; 39:5g,
f40; 40:5; : : : ; 79:5g, f80; 80:5; : : : ; 114g to avoid pitch mul-
tiple estimates. Then, the initial pitch value P i

k+1 of the
future frame is chosen from the three candidates by picking
the lowest possible pitch value for which Ek+1(p) is in an
acceptable range of the global minimum error value with a
bias for choosing lower pitch values.

Next, we obtain the initial pitch value P 0

k
of the current

frame among the initial pitch values P i

k
and P i

k+1, and a
backward pitch value Pb that minimizes the current frame's
error function Ek(p) in the neighborhood of the previous
pitch value Pk�1.

The last step is to check for submultiples of the initial
pitch value P 0

k
to avoid pitch doubling and tripling type

of errors. The pitch error function values at the submulti-
ples are compared to Ek(P

0

k
) using a novel frame adaptive

threshold function to decide whether the nth submultiple
of P 0

k
is the true pitch period. Finally, the lowest submulti-

ple which satis�es the thresholding is selected; otherwise, if
none of the submultiples satisfy the thresholding, then P 0

k
,

is chosen as the �nal pitch value Pk.
We performed a statistical test to compare the accu-

racy of the pitch estimates made by the Inmarsat-M codec
and the proposed new pitch estimation and tracking algo-
rithm. In the performance evaluations, the pitch contours
were hand labeled for 5500 voiced frames (of 20 ms each).
We found that the percent of pitch estimation errors (e.g.,
selecting a multiple or submultiple of the true value) us-
ing the proposed pitch tracker instead of the IMBE pitch
tracker was reduced from 0.9% to 0.5%. Also the looka-
head delay is one frame instead of two. Thus, the new
pitch tracking technique is both more robust and computa-
tionally more e�cient than the Inmarsat-M pitch tracker.

The pitch estimation and tracking algorithm is disabled
for frames declared unvoiced by the active speech classi-
�er. Otherwise, the �nal pitch estimate is used to compute
the number of harmonics in the spectrum and boundaries
between adjacent harmonic bands as in IMBE. The V/UV
decision for harmonic bands in voiced frames is made as in
the EMBE codec [5].

4. TECHNIQUES FOR SPECTRAL SHAPE

QUANTIZATION

The e�cient quantization of spectral shape vector (SSV)
which consists of spectral magnitudes for each harmonic
interval, is one of the more di�cult problems in spectral
coding. This is mainly because the SSV is a variable di-
mension vector whose dimension can vary from 9 to 51.
At low bit rates, the overall quality of coded speech signif-
icantly depends on how e�ciently the variable dimension
spectral vectors are quantized. The practical solutions to
SSV quantization can be broadly classi�ed into two cat-
egories: dimension conversion VQ (DCVQ) and variable
dimension VQ (VDVQ). In DCVQ, the variable dimension
SSV is converted to a �xed dimension vector prior to ap-
plying VQ. Dimension conversion methods include spectral
interpolation methods [2], and non-square transform VQ
(NSTVQ) [11]. In VDVQ, the variable dimension SSV is
encoded using a universal codebook without introducing
any modeling distortion [5], [12].

We propose a reduced dimension vector quantization
(RDVQ) technique which provides e�cient rate-distortion
performance and also overcomes the high-dimensionality
and high-storage requirements of other methods for pos-
sible real-time realization of the coder. Also we propose a
quantization structure for the unvoiced spectra using the
cepstral sequence of the short-time spectra. The key ideas
of these techniques are summarized here.

In RDVQ, the current dimension Lk of the SSV is re-
duced to a �xed lower dimension LR by removing some
harmonic magnitudes if Lk > LR. Otherwise, we map the
smaller dimension vector to an LR dimension vector, as is
done in VDVQ [5], using a universal codebook with dimen-
sion LR. The dimension of the universal codebook as used
here is much smaller than in the cited prior work on VDVQ.

Thus, for Lk > LR we can map any variable-dimension



spectral shape vector to the reduced �xed-dimension vector
(of dimension LR) that enables us to perform a regular LR

dimensional vector quantization. In the decoding process,
the missing magnitudes of the SSV are linearly interpolated
from neighboring quantized magnitudes in the LR dimen-
sion vector. Reduced dimension VQ approach, thus intro-
duces a modeling distortion only for spectral shape vectors
with dimension Lk > LR. On the other hand, spectral
shape vectors having dimension Lk � LR can be repre-
sented without any modeling distortion.

For frames declared unvoiced or silence by the active
speech classi�er, the speech quality of the EMBE coder im-
proves upon IMBE by using a �xed number of harmonic
bands. However, this representation requires a high dimen-
sional SSV representation for a reasonable modeling dis-
tortion of the short-time spectra. Alternatively, the short-
time spectra can be parametrically modeled. We introduce
a cepstral representation, extracted from Fourier transform
domain, to model the short-time spectra. This method ex-
ploits the fact that the low-indexed coe�cients of the cep-
strum sequence carry most of the information for voiced
speech. The proposed cepstral representation gives an ob-
jective and subjective performance that is similar to the
r.m.s. energy representation scheme, but with a much lower

dimensional representation.

5. PERFORMANCE COMPARISONS OF

SPECTRAL SHAPE QUANTIZATION

In the encoding process, the RDVQ scheme is used for
voiced and mixed-voiced speech frames, while the cepstral
representation is used for the unvoiced and silence frames.
In our coder implementation, we use LR = 26. To re-
duce the computational complexity, we use a multi-survivor
trellis-coded and gain-removed multistage VQ structure [13]
with 4 survivors. In the multistage VQ structure, we as-
sign 6 bits to each of the �rst two stages, and 5 bits to
each of the other stages. The gain term is quantized using
separate 9 bit codebooks, one for voiced frames and an-
other for frames classi�ed as unvoiced (including silence).
The voiced and mixed-voiced classes are quantized using
11 stages MSVQ structure. The performance evaluations
of RDVQ are done with respect to VDVQ based schemes,
where the spectral distortions between two short-time spec-
tra from synthetic speech waveforms with unquantized and
quantized harmonic magnitudes are found to be 4.14 dB,
5.12 dB, and 4.10 dB for VDVQ, transform VDVQ, and
RDVQ schemes, respectively. As seen, the reduced dimen-
sion vector quantization technique performs slightly bet-
ter than VDVQ based techniques. Also, the storage re-
quirements are reduced to one half compared to transform
VDVQ technique which is a reduced-storage (and reduced
complexity) version of VDVQ [6].

The evaluation of cepstral domain representation is per-
formed considering the modeling and quantization distor-
tions, and is presented in Table 1. The �rst row shows
the traditional method which divides the spectra into �xed
number of bands and represents each band with its r.m.s.
value. The second row shows the performance of 16 di-
mensional cepstral representation. The last row shows the
performance of an LP spectral model. The evaluations of

Methods Model SD SD after Quantization
(dB) (dB)

UV Sil. UV Sil.
9+22 bits 9+12 bits

RMS(1+26) 4.86 5.04 5.60 5.70
Cep.(1+15) 4.84 5.01 5.24 5.51
LP(1+15) 5.54 5.68 - -

Table 1: Quantization performance of unvoiced and silence
spectra.

the modeling schemes are presented in terms of spectral dis-
tortion between the original and model short-time spectra.
The modeling performance of the 16-th order cepstral repre-
sentation is found to be similar to that of a 26-dimensional
r.m.s. representation in terms of spectral distortion. The
spectral distortion between original and quantized spectra
is presented in Table 1. The performance of 4 stages MSVQ
for unvoiced spectra is shown in the second-last column, and
that of 2 stages MSVQ for silence spectra is shown in the
last column. In the �nal form of the coder we chose 4 and
2 stages of MSVQ structure for unvoiced and silence classes
respectively.

6. SYNTHESIS WITH PARTIAL PHASE

INFORMATION

In spectral domain coding, the synthetic voiced speech is
represented as a sum of sinusoidal oscillators:

ŝv(t) =
X
m

�m(t) cos(�m(t)) (1)

wherem spans all harmonic bands, �m(t) are linearly inter-
polated harmonic magnitudes between frames, and �m(t)
is the synthetic phase track with initial phase �m:

�m(t) =

Z
t

0

!m(�)d� + �m: (2)

If we use the same initial phase, �m = �0, for all m, as
in IMBE type coders, then the lack of relative phase infor-
mation among harmonic frequencies causes the synthesized
time domain waveform to look arti�cially impulsive at pitch
period intervals.

We introduce partial phase information for the nine
lowest harmonics, which for each UV/V transition is sent
three frames after the last unvoiced frame. This relative
phase information is tracked through the subsequent voiced
frames. Since we have one voicing decision for three consec-
utive harmonic intervals, we need to send three phase terms
three frames after each UV/V transition. The phase terms
�3l�2; �3l�1; �3l corresponding to the l-th voicing band are
grouped as a vector �l. We represent �l; l = 1; 2; 3 with
a 7-bit VQ codebook. It is observed that the bit rate over-
head is 50-100 bps for this amount of partial phase infor-
mation. The synthetic waveform reconstructed with the
partial phase information is perceptually more natural than
the waveform reconstructed without the phase information.



Parameters Modes (bits)
S UV V UV/V

Voicing 4 4 4 -
Pitch - - 8 -

SSV-gain 9 9 9 -
SSV-shape 12 22 57 -
Phase - - - 7-21
Total 25 35 78 21
Rate 1.25 1.75 3.90 -

Table 2: Bit allocation.

Also, the arti�cially impulsive character of the synthesized
time domain waveform is signi�cantly reduced.

7. BIT ALLOCATION AND SUBJECTIVE

PERFORMANCE RESULTS

The bit allocation for voiced, unvoiced, and silence frames
(of 20 ms each) are 78, 35, and 25 bits/frame respectively.
Table 2 gives the break-up for the di�erent modes. The
SSV gain term represents the mean value of the SSV for
voiced frames and the �rst cepstral parameter for unvoiced
and silence frames. The overall bit rate of the coder can be
derived according to the target application. For telephone
communication application, the overall bit rate can be es-
timated to be around 2.2 kbps assuming 50% activity with
20% unvoiced and 30% voiced frames. However, for stor-
age applications, such as answering machines, the overall
bit rate can be estimated as 2.8 kbps assuming 10% silence,
40% unvoiced, and 50% voiced frames.

Natural quality synthesis is one of the important tar-
gets of our coder. To evaluate the subjective quality of the
proposed coder, we performed ACR and CCR tests with 20
subjects. The procedure was very similar to the subjective
quali�cation test plan of the ITU-T 4.0 kbps speech cod-
ing study group. The MOS score for the proposed coder
is found to be 3.4 for ACR test and 3.6 for the ITU-T
G.723.1 coder at 5.3 kbps. However, the standard deviation
was relatively high { approximately 0.9, indicating that the
MOS di�erence 0.2 between two coders is not signi�cant
to distinguish the proposed coder from the G.723.1 coder.
Comparative category rating (CCR) MOS scores were also
obtained for o�ce type babble noise at 30 dB SNR. The
uncoded and coded noisy speech pairs are compared and
evaluated in a �3 to 3 numerical scale. The �nal compar-
ative MOS scores are obtained as the absolute degradation
of coded speech from uncoded speech, and they are found
to be 0.8 for the proposed coder and 0.6 for ITU-T G.723.1
coder at 5.3 kbps.

8. CONCLUSIONS

Several techniques have been found which contribute sig-
ni�cantly to achieving high performance natural-sounding
speech with a variable-rate spectral modeling coder with
average rate of 2.8 kbps. The test results as well as infor-
mal listening con�rm that the quality is very similar to that

of the \nearly" toll-quality ITU-T G.723.1 coder operating
at the much higher (�xed) rate of 5.3 kbps.
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