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ABSTRACT

In this paper we propose the MVDR method, which is
based upon the Minimum Variance Distortionless Response
(MVDR) spectrum estimation method, for modeling voiced
speech. Developed to overcome some of the shortcomings
of Linear Prediction models, the MVDR method provides
better models for medium and high pitch voiced speech.
The MVDR model is an all-pole model whose spectrum is
easily obtained from a modest non-iterative computation in-
volving the Linear Prediction coe�cients thereby retaining
some of the computational attractiveness of LPC methods.
With the proper choice of �lter order, which is dependent
on the number of harmonics, the MVDR spectrum models
the formants and spectral powers of voiced speech exactly.
An e�cient reduced model order MVDR method is devel-
oped to further enhance its applicability. An extension of
the reduced order MVDR method for recovering the cor-
rect amplitudes of the harmonics of voiced speech is also
presented.

1. INTRODUCTION

In speech compression systems, good modeling of the short-
term spectrum of speech is critical for success. For voiced
speech, which is periodic, a speech compression system must
model the powers of the spectrum at the harmonic fre-
quencies well, especially the locations and powers of the
perceptually important formants. For both time-domain
and frequency-domain coders, the Linear Prediction (LP)
method has been used to model the short-term spectrum
of speech [1], [2]. The LP method has achieved remark-
able success and longevity in speech compression systems
because of its simplicity of computation, ability to provide
a spectral envelope for both voiced and unvoiced speech,
and its amenability to e�cient Vector Quantization tech-
niques. However, the LP spectrum does not model voiced
speech well, especially medium and high pitch voiced speech
[3], [4]. In particular, the LP spectrum does not model the
spectral powers at the harmonic frequencies well, especially
at the perceptually important formants.

To address these shortcomings, we introduce the MVDR
method as an alternative and complement to the LP
method. The MVDR method is based upon the Minimum
Variance Distortionless Response Spectrum, a spectrum es-
timation method popular in array processing [5]. In con-
trast to the LP �lter, the MVDR method, using a high

order all-pole �lter, provides a spectrum that models ex-
actly the spectral powers at the harmonic frequencies of
voiced speech. In addition, the MVDR method is a compu-
tationally simple technique based upon the LP coe�cients
themselves. As a result, speech compression systems can
employ the MVDR method without abandoning the pop-
ular methods for quantizing LP coe�cients. In addition,
the MVDR method may be used to parametrically repre-
sent voiced speech spectral powers in a frequency domain
speech coder such as the Multi-Band Excitation coder [6].
This paper is organized as follows. In section II, we con-

sider the limitations of Linear Prediction in modeling voiced
speech. In section III, we present the MVDR method and
discuss its suitability for modeling voiced speech. In sec-
tion IV, we address some practical considerations in MVDR
modeling, namely model order reduction, and re�nement of
the power estimates of voiced speech harmonics.

2. THE LINEAR PREDICTION METHOD

An all-pole �lter is commonly employed to model the vocal
tract in speech processing. The Linear Prediction method
is used to obtain the parameters of the all-pole �lter. The
LP �lter tries to whiten the input signal by minimizing the
variance of its output. The LP �lter is de�ned as A(z) =

1+
PM

k=1
akz

�k where the ak's are LP coe�cients obtained
by the Levinson-Durbin computation, and M is the �lter
order. In addition, the LP �lter de�nes a spectrum,

PLP (!) =
Pe��1 +PM

k=1
ake�j!k

��2 (1)

where Pe is the prediction error variance. We consider an-
alytically the performance of the LP method in modeling
voiced speech by examining its performance for a signal with
a discrete line spectrum, which is a reasonable approxima-
tion of a voiced speech signal.

In particular, assume that the voiced speech signal is pe-
riodic, and for short times, usually 20ms, is modeled as

u(n) =

LX
k=1

ckcos(!0kn+ �k) (2)

where !0 is the fundamental (radial) frequency of the
speech, the ck's are the amplitudes at the harmonic fre-
quencies, and L is the number of harmonics. The pitch
of the speech is f0 = !0

2�
, and the number of harmonics



is L = b fs
2f0

c where fs is the sampling frequency, typically
8kHz. The number of harmonics L decreases as the pitch
increases. With this model for voiced speech, the signal has
a correlation sequence

ruu(m) =

LX
k=1

jckj
2

4
cos(!0km): (3)

This model for voiced speech exhibits a discrete line spec-

trum with the spectral powers Suu(!0k) =
jckj

2

4
at the har-

monic frequencies, !0k, 1 � jkj � L.
For this voiced speech model, the prediction error, which

is the variance of the output of the LP �lter A(z), is given
by

Pe =

LX
k=1

jckj
2

2
jA(ej!0k)j2; (4)

where we have used the fact that the LP �lter is real and
has a symmetric frequency response. Pe can be minimized
by placing the zeros of A(ej!) at ej!0l, which corresponds
to the harmonic content of the signal. Pe can be made
zero for a signal with L harmonics, and consequently 2L
exponentials, when the �lter has enough zeros to cancel
all the input exponentials, i.e. M � 2L. Therefore, for
M � 2L the LP spectrum (c.f. eq. 1) or even 1

jA(ej! )j2
does

not give any indication of the power at the harmonics. In
general, for M near 2L, which corresponds to the high to
medium pitch voiced speech case, one can foresee modeling
problems using the LP method.
In the case where the �lter order is not su�cient, or

M < 2L, the LP �lter does not have enough �lter zeros to
cancel the 2L exponentials in the input signal. ForM < 2L,
the following relationship can be established between the
LP spectral estimate at a particular harmonic frequency !0l
and the power of the harmonics by substituting the expres-
sion for the prediction error (c.f. eq. 4) into the expression
for the LP spectrum (c.f. eq. 1),

PLP (!0l) =
jclj

2

2
+

LX
k=1;k 6=l

jckj
2

2

jA(ej!0k)j2

jA(ej!0l)j2
: (5)

By some simple manipulations, it can be shown that

LX
k=1

jckj
2

2

PLP (!0k)
= 1: (6)

This sets up a complicated relationship between the LP
spectral estimates PLP (!0k), and the actual spectral pow-

ers, jck j
2

4
. The LP �lter does not have a constrained re-

sponse at any particular frequency, and so the prediction er-
ror and consequently the spectral estimate can be somewhat
arbitrary at the harmonic frequencies. This relationship
creates problems in attempts to compensate the LP spec-
tral estimates at the harmonic frequencies. For M << 2L,
an alternative argument can be used to show that the LP
method is a reasonable approach and that the LP spectrum
scaled by 1

2L
does yield a reasonable estimate of the pow-

ers at the harmonics. Consequently for low pitch signals

the LP spectrum better approximates the original voiced
speech spectrum, and the biasing is less severe.
To see some of the problems of LP in modeling voiced

speech, consider Figure 1. We used real voiced speech sig-
nals in all of our simulations. In addition, we used auto-
correlation sequences like the one in eq. 3 by employing
a simple peak-picking method and open-loop pitch estima-
tion. In this example, a 14th order LP spectrum is modeling
a 320Hz voiced speech spectrum. The LP spectrum overes-
timates the spectral power at one of the main formants. A
higher order LP �lter will not correct the overestimation,
and in fact will only exacerbate the problem.

3. MVDR MODELING OF VOICED SPEECH

The MVDR method is similar to the LP method in many re-
spects in that the MVDR �lter is also an all-pole �lter that
is obtained by an extension of the Levinson-Durbin compu-
tation [5]. In contrast to the LP method which constrains
the �rst coe�cient of its �lter to be 1, in the MVDR method
an FIR �lter h(n) is designed which minimizes its output
variance subject to the constraint that the response of the
�lter at a particular frequency !l has unity gain, namely

H(ej!l) =
PM

n=0
h(n)e�j!ln = 1. The constraint is com-

monly referred to as the distortionless constraint. Math-
ematically, the optimum FIR �lter, denoted by hl(n); for
frequency !l is obtained as a solution to the optimization
problem

min
h(n)

�
1

2�

Z �

��

jH(ej!)j2Suu(e
j!)d!

�
subj. to H(ej!l) = 1:

Suu(e
j!) is the actual power spectrum of the input signal.

The power at the output of the optimized constrained �lter
is used by the MVDR method as an estimate of the power
spectrum at the frequency !l; i.e.

PMV (!l) =
1

2�

Z �

��

jHl(e
j!)j2Suu(e

j!)d!: (7)

The distortionless response constraint at !l coupled with
the output power minimization ensures that the MVDR
�lter hl(n) designed for !l will attempt to faithfully preserve
the input signal power at !l. This is the key di�erence
between the MVDR method and the LP method that allows
the MVDR method to give a better model for high pitch
voiced speech.
We must stress that in the MVDR method the need to

design a separate �lter for each frequency, !l, is only con-
ceptual. It can be shown that the MVDR spectrum for all
frequencies can be simply computed as

PMV (!) =
1

vH(!)R�1
M+1v(!)

=
1

jB(ej!)j2
; (8)

where v(!) = [1; e�j! ; e�j2! ; � � � ; e�jM!]T , and RM+1 is
the (M + 1)� (M + 1) Toeplitz autocorrelation matrix of
the input signal [5]. This spectrum is easily obtained from
a modest non-iterative computation using the LP coe�-
cients [5]. So a speech compression system can still use the
Levinson-Durbin computation to obtain the LP coe�cients,
and can still use the LP Vector Quantization methods. The



all-pole �lter B(z) corresponding to the MVDR spectrum
is also easily obtainable using a non-iterative spectral fac-
torization technique that does not involve root-searches [7].
We now elaborate on the MVDR method and voiced

speech modeling. For any voiced signal of pitch !0; from
eq. 7, the MVDR spectral estimate at !l = !0l is given by

PMV (!0l) =

LX
k=1

fjHl(e
j!k)j2 + jHl(e

�j!k)j2g
jckj

2

4
;

where L is the number of harmonics. The MVDR �lter
hl(n) designed for the lth harmonic !0l will try to faithfully
preserve the input power at !0l while trying to mitigate the
inuence of the other 2L� 1 exponentials. In particular,

PMV (!0l) =
jclj

2

4
+ jHl(e

�j!l )j2
jclj

2

4
+ (9)

LX
k=1;k 6=l

fjHl(e
j!k )j2 + jHl(e

�j!k )j2g
jc0kj

2

4
:

The �rst term is the power in the exponential at !0l which
passes through the �lter undistorted because of the distor-
tionless constraint. If the MVDR �lter has M �lter zeros,
and M � 2L� 1, then the MVDR �lter has enough degrees
of freedom to cancel all the other input exponentials. In this
case, the MVDR spectral estimate obtains the exact value
of the input spectral power at that harmonic. When the
�lter order M is insu�cient, or M < 2L�1, the MVDR �l-
ter does not have enough zeros to cancel out the interfering
harmonic signals. In this case, the MVDR spectral estimate
will exhibit a positive bias as the other exponential signals
leak through.
Based on the above discussion, the power estimates at

the harmonics get better as the model order M increases.
Consequently, in modeling voiced speech, the MVDR �lter
with a su�cient order usually models voiced speech better
than the LP �lter. In particular, we have observed that for
most cases of voiced speech, when the MVDR �lter order
M is greater than the number of harmonics L, the MVDR
spectrum outperforms the LP spectrum in modeling the for-
mants and spectral powers at the harmonics. In addition,
we have noticed excellent results for a �lter order of about
M = 1:6L. For instance, consider Figure 2. In this case,
the MVDR spectrum using a �lter order of M = 41 models
the 160Hz medium pitch voiced speech spectrum very well.
Note that the MVDR spectrum captures the spectral pow-
ers at the main formants exactly, and models most of the
spectral powers at the harmonic frequencies quite well. The
MVDR spectrum exhibits a modest bias in the less percep-
tually important valleys of the spectrum. As the �lter order
is increased, the MVDR spectrum improves, better match-
ing the input speech spectrum. This is consistent with good
modeling behavior because it is important that models per-
form better as the model order is increased. In contrast,
the LP spectrum does not have such a feature.
For high pitch speech, the MVDR method does not need

a large �lter order, and so it performs better than the LP
method. For low pitch, the LP approach is appropriate.
For medium range pitch, the crossover point is unclear and

needs further study. Now we consider modi�cations that
enhance the features of MVDR modeling.

4. MODEL ORDER REDUCTION AND

AMPLITUDE RECOVERY

We now discuss an approach to reducing the model order
and an approach to recovering the harmonic powers.

4.1. Reduced Order MVDR Filters

In the MVDR method, we have seen that the high order
�lter is able to capture the spectral envelope and spec-
tral powers at the harmonics quite well. It is desirable to
translate the quality of the high order estimate to a low
order �lter. The high order MVDR �lter models an AR
spectrum PMV (!) that provides a good spectral envelope
for medium and high pitch voiced speech. We note that
PMV (!) is strictly speaking not a power spectrum in that
its Fourier inverse does not give back the input autocorre-
lation sequence. Consequently, approximating the higher
order MVDR spectrum by a lower order �lter does not sim-
ply amount to applying the MVDR method to a small set
of given autocorrelation lags. Instead, we can view the high
order MVDR spectrum as a very good AR model of the
vocal tract and it is this high quality MVDR spectrum that
needs to be approximated by a low order all-pole �lter.
The order reduction procedure is as follows. First, we

take a high order, high quality MVDR spectrum, and ob-
tain an all-pole, causal and stable �lter B(z) from it by us-
ing a non-iterative spectral factorization [7]. The Levinson-
Durbin procedure is run in reverse to take the high order
B(z), and obtain a lower-order �lter C(z) that approxi-
mates B(z). This reduced order MVDR �lter C(z) often
outperforms the normal low order LP �lter in modeling
medium to high pitch voiced speech. Rather than trying to
model a discrete line spectrum, the reduced order MVDR
spectrum will try to match the original high quality MVDR
spectrum.
For example, consider Figure 3. In this case, the 14th

order reduced order MVDR spectrum based upon the high
order (M = 31) MVDR spectrum models the 186Hz voiced
speech spectrum better than a normal 14th order LP spec-
trum, especially at the formant frequencies. If we raise the
order of the reduced order MVDR spectrum, its estimates
become better. In fact, the performance of the reduced or-
der MVDR spectrum depends directly upon the order mis-
match between the reduced order MVDR �lter, and the
high order high quality MVDR �lter.

4.2. Amplitude Recovery in the MVDR Method

In frequency-domain coders such as the Multi-Band Exci-
tation coder, better estimates of the voiced speech spectral
powers at the harmonic frequencies are desired. We can use
some properties of the MVDR approach to obtain re�ned
estimates from the reduced order MVDR models.
Recall that if the input voiced speech is assumed to be

a discrete line spectrum, then the MVDR spectral esti-
mate at harmonic frequency !l = !0l is given by eq. 9.
We can obtain estimates for all L harmonic frequencies,
!0; � � � ; !0L in which the estimates PMV (!0l) and �lter re-
sponses H(ej!0l) are known and where the true spectral

powers jckj
2

4
, k = 1; ::;L are the unknowns. Using eq. 9,



one can set up a system of L equations with L unknowns.
This can be written compactly as p =Wc, where p is the
Lx1 column vector of MVDR spectral estimates, PMV (!0l),
l = 1; ::;L, W is the matrix of MVDR �lter gains, and c

consists of the unknown actual spectral powers. We are in-
terested in the case where the �lter order M is less than
the number of harmonics L. In this case, the rank of the
LxL matrix W is just M + 1. Hence W is not invertible.
However, we can obtain a minimum norm solution by set-
ting ĉ =Wyp where y denotes the pseudo-inverse of the
matrix. In many cases, this minimum norm solution can
recover some of the true spectral powers at the harmonics
for medium to high pitch speech, and can provide a better
estimate than a comparable order LP �lter.
For example, consider Figure 4. In this case, the 14th

order compensated MVDR spectral estimates of the 222 Hz
voiced speech powers at the harmonic frequencies are better
than the normal LP estimates. Hence, the original spectral
powers at the harmonic frequencies can be better recovered
from a reduced order MVDR spectral estimate by using this
matrix compensation procedure.
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Figure 1. Linear Prediction Spectrum of a 320Hz

Voiced Speech Spectrum, M=14
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Figure 2. MVDR Spectrum of a 160Hz Voiced

Speech Spectrum, M=41
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Figure 3. Comparison of normal LP spectrum (- -),

reduced order MVDR spectrum, and 186Hz Voiced
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