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ABSTRACT

We estimated the perceptual entropy rate of the phonemes
of American English and found that the upper limit of the
perceptual entropy of voiced phonemes is approximately
1.4 bit/sample, whereas the perceptual entropy of unvoiced
phonemes is approximately 0.9 bit/sample. Results indicate
that a simple voiced/unvoiced classi�cation is suboptimal
when trying to minimize bit rate. We used two di�erent
methods for the entropy estimation, and the results of both
methods show that short segments of unvoiced speech are
approximately Gaussian.

1. INTRODUCTION

Many source-controlled multimode speech coders use pho-
netic classi�cation to determine the bit allocation algorithm
to be used for each segment of speech [1]. For the design of
such bit allocation algorithms it is important to know the
minimum bit rate needed for transparent coding of each
of the phonetic classes used by the coder. This bit rate is
called the perceptual entropy rate. Often, the coder uses
only two or three phonetic classes, since a more detailed
classi�cation requires a long delay. Examples of phonetic
classes commonly used are: voiced phonemes, unvoiced pho-
nemes, and silence or background noise [1].

Until now, perceptual entropy rate estimates were pub-
lished only on unclassi�ed speech [2] and music [3]. Yet
many source-controlled multimode coders assign more bits
to voiced segments than to unvoiced segments [1, 4]. To
obtain the perceptual entropy we applied Johnston's mask-
ing model [2] which is used in audio coding [5] and speech
coding [6].

This paper presents the results of perceptual entropy
rate estimates for the phonemes of American English. They
were obtained by analyzing the TIMIT Speech Corpus [7],
containing �ve hours of speech by native speakers of Amer-
ican English. Since perceptual entropy rate estimates of
a single phoneme do not take into account the probability
of occurrence of that phoneme, the estimates represent the
conditional perceptual entropy given the phoneme.

In Section 2 we outline the methods used for percep-
tual entropy rate estimation. One masking model was used
in conjunction with two di�erent entropy estimation meth-
ods. Section 3 establishes the consistency of both entropy
estimation methods, outlines the calculation of the entropy
for unvoiced phonemes and presents our results. Finally,
Section 4 presents a discussion and our conclusions.

2. PERCEPTUAL ENTROPY ESTIMATION

As a preprocessing step for perceptual entropy estimation,
the entire TIMIT Speech Corpus was downsampled to 8 kHz
to comply with the de-facto standard sampling rate used in
speech coding. For this purpose, a 100'th order low-pass
FIR �lter was used with a cut-o� frequency of 3.72 kHz.
Then for one segment of each phoneme of every sentence in
the data base, the perceptual entropy rate was estimated
by a procedure consisting of two steps. First, the masking
threshold was estimated using the auditory model of John-
ston [2]. The masking threshold is the maximum additive
noise spectrum that can be injected into the signal without
being perceived. The model approximates the actual mask-
ing threshold with a staircase threshold consisting of adja-
cent, non-overlapping frequency bands. The bandwidth of
each of the bands is equal to the critical bandwidth at the
center frequency of the band. Johnston's results [2] show
this staircase threshold represents a close approximation to
the actual masking threshold. The masking threshold was
used in the second step which consisted of the actual en-
tropy estimation. Two di�erent entropy estimation meth-
ods were applied: the �rst one is based on rate-distortion
theory, and the second one uses the quantization indices of
the real and imaginary part of the complex spectrum. The
methods are described in the following two subsections.

2.1. Gaussianity based method

Under the assumption that the speech signal is Gaussian,
the average entropy rate R of a signal with power density
spectrum P(!) and an error power density spectrum N (!)
equals [8]
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In this case, N (!) is the masking threshold.
By accumulating estimates from segments of every oc-

currence of a phoneme, a histogram is generated. Such a
histogram shows the distribution of the perceptual entropy
of a particular phoneme, and it indicates the variability of
the perceptual entropy.

The actual perceptual entropy of a speech segment is
not higher than the results obtained with this method, since
a Gaussian distribution is assumed and such a distribution
has the highest di�erential entropy of all possible distribu-
tions [8]. Thus, only if speech is Gaussian does this method
give the actual entropy. In case speech is not Gaussian, an
upper limit to the actual entropy is obtained.



2.2. Entropy of quantization indices

The second method of entropy estimation requires quanti-
zation of the real and imaginary part of the complex spec-
trum in the same way as in [2]. Quantization is performed
using a uniform quantizer with a frequency-dependent step
size. Based on the assumption that the energy is divided
equally among all spectral lines in a frequency band, and
using the fact that the energy is distributed equally among
the real and imaginary part of the complex spectrum, the
step size is determined for each of the frequency bands of
the staircase masking threshold. The quantization indices
thus obtained are used to estimate the entropy according
to

H = �
MX
i=1

pi log2 [pi] ; (2)

whereM is the number of di�erent quantization indices and
pi is the probability that the i'th index occurs.

To account for dependence between the quantization in-
dices of N adjacent spectral lines of the real or imaginary
part of the complex spectrum, the probability of vectors
of dimension N must be estimated. Then, the entropy
per symbol HN is a decreasing sequence, and its limit is
the entropy H

1
of a source with memory. When H

1
is

known, all dependence is accounted for. Since high mem-
ory requirements prohibit entropy estimation of dimensions
greater than 6 or 7, the obtained curve must be extrapo-
lated to estimate H

1
.

To estimate the probability distribution reliably, a large
number of quantization indices are needed. Therefore, the
quantization indices of every occurrence of a particular pho-
neme are accumulated. Thus, one perceptual entropy esti-
mate is obtained for every dimension N .

Since a rectangular lattice quantizer is used, the en-
tropy H

1
is at least 0.255 bit/sample higher than the rate-

distortion function [9]. This di�erence is due to the fact
that this quantizer does not use an optimal packing.

In conclusion, H
1

minus 0.255 bit/sample represents
an estimate of the actual entropy of the segment. This
result is lower than the result obtained from the Gaussianity
based method if the speech in the segment is not Gaussian.
Otherwise the two methods yield equal results.

2.3. Limitations of entropy estimation methods

The actual bit rates needed for transparent coding of \run-
ning" speech are slightly higher than the results indicate,
since the nonstationary character of the signal must be
taken into account. Both methods assume the signal is sta-
tionary, and to ensure the signal statistics change as little
as possible within a frame, a framelength of 128 samples
was used in the analysis.

The additional entropy rate required to describe the
change in signal statistics is approximately 50 bits per sec-
ond. This rate corresponds to the entropy of a single pho-
neme, which is about 5 bit/phoneme (based on the relative
frequencies in [10]), and the average number of phonemes
spoken per second, which is about 10. In addition, the vari-
ability of the power density spectra and masking threshold
across the ensemble of one phoneme accounts for some ad-
ditional entropy rate.

In the analysis the second frame of each phoneme was
used, since at the onset and at the end of a phoneme sig-
nal statistics change faster than elsewhere. However, this
underestimates the entropy rate because there is additional
variation across the phoneme.

For voiced speech, a possible disadvantage of using short
framelengths is the high mutual information between ad-
jacent frames caused by the nearly periodic structure of
the waveform. For longer frames this e�ect decreases, and
therefore a larger framelength may be more appropriate for
voiced speech.

3. RESULTS

In this section the results of both entropy estimation meth-
ods are compared. Then, the estimation ofH

1
for unvoiced

phonemes is outlined, and a lower bound to the entropy of
voiced phonemes is described. Finally, the last subsection
presents the results for eight phonetic classes.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

Entropy (bit/sample)

P
ro

b.
 d

en
si

ty

Entropy distribution of /ae/

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

Entropy (bit/sample)

P
ro

b.
 d

en
si

ty

Entropy distribution of /s/

Figure 1: Histograms with the entropy distribution for the
Gaussianity based method for /ae/ (left) and /s/ (right).
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Figure 2: Entropy estimates for the entropy of quantiza-
tion indices method (solid) for /ae/ (left) and /s/ (right).
The dashed-dotted curves are those for a �rst-order Markov
model.

3.1. Validation of entropy estimation methods

For a Gaussian distribution, the methods of Sections 2.1
and 2.2 must give the same outcome, since in this case Equa-
tion (1) gives the actual rate-distortion function. Unvoiced
speech is likely to have a Gaussian distribution, whereas
voiced speech is not.

For the phonemes /ae/ and /s/ the results of the Gaus-
sianity based method and the entropy of quantization in-
dices method are shown in Figures 1 and 2.

For /s/ the value of H
1

is 1.03 bit/sample (see the fol-
lowing subsection) and the mean of the Gaussianity based



method is 0.89 bit/sample. If the 0.255 bit/sample o�set is
subtracted from H

1
the result is slightly lower than that

of the Gaussianity based method. This is consistent with
the expectations at the beginning of this subsection, and
it was found to be true for all unvoiced phonemes. There-
fore, short segments of unvoiced speech are approximately
Gaussian.

For /ae/, Figures 1 and 2 show that subtracting the o�-
set from H7 yields an entropy which is signi�cantly lower
than the Gaussianity based result. Again, this is consis-
tent with the expectations at the start of this subsection.
Since this was true for all voiced phonemes, the Gaussianity
based results for these phonemes must be regarded as up-
per limits to the actual entropy. In addition, convergence of
the entropy of quantization indices of /ae/ does not become
apparent for dimensions smaller than eight. However, the
curve for /ae/ must also converge, since HN is a decreasing
sequence which is lower bounded by zero.

To evaluate further the reliability of the estimates, we
also used frames of 256 and 512 samples. Varying the frame-
length did not signi�cantly inuence the estimates. Results
varied by only a few hundredth bit/sample. For voiced pho-
nemes this seems somewhat surprising, and it may be due
to the limitations of the masking model which hardly takes
into account the �ne spectrum.

3.2. Unvoiced phonemes

H
1

for unvoiced phonemes can be calculated by assuming
a �rst-order Markov chain as a model of the quantization
indices. This leads to a simple recursive expression that
yields a curve which matches the HN -curve very well.

For brevity, let FN (U) denote the conditional entropy
of the N 'th symbol uN if the sequence of N � 1 previous
symbols fuN�1; : : : ; u1g is known. Then the joint entropy
of fuN ; : : : ; u1g is

H (UN ; : : : ; U1) =

NX
i=1

Fi (U) ; (3)

and consequently the joint entropy per symbol is

HN (U) =
1

N

NX
i=1

Fi (U) : (4)

From (4) it follows that

FN+1(U) = (N + 1)HN+1(U)�NHN(U) (5)

and combined with FN+1(U)�FN(U) � 0 [11] (with equal-
ity for all N > n for an n'th order Markov model) Equa-
tion (5) yields

HN+1 (U) �
2N

N + 1
HN (U) +

N � 1

N + 1
HN�1 (U) ; (6)

with equality for N � 2 if the source is a �rst-order Markov
chain. The curves for (6) with equality are shown in Fig-
ure 2. H

1
is determined by substituting N = 1 in (5)

and realizing that for a �rst-order Markov chain H
1

= F2.
Thus,

H
1

= 2H2 �H1: (7)

Figure 2 shows that the quantization indices of /s/ are mod-
eled accurately by a �rst-order Markov model, whereas the
indices of /ae/ contain dependence such a model cannot ac-
count for. This is a general distinction between unvoiced
and voiced phonemes caused by the pulse-like structure of
voiced speech.

3.3. Voiced phonemes

Since the structure of voiced phonemes resembles a pulse
train, the dependence between quantization indices is dif-
ferent than for unvoiced phonemes. A lower bound for the
entropy of the quantization indices of voiced phonemes is
found by substituting the original signal phase with a linear
phase of random slope. The corresponding time-domain sig-
nal has a pulse train character. (The spacing of the pulses is
determined by the fundamental frequency and the o�set of
the pulse train is determined by the slope of the phase spec-
trum.) By altering the phase spectrum of every segment in
the ensemble and estimating the entropy with the entropy
of quantization indices method, a lower bound to the actual
entropy is found. The slope of each phase spectrum was a
uniformly distributed random variable on [�s; s], and s cor-
responds to the average pitch in the data base. As 70% of
the sentences were spoken by male speakers, the average
pitch of male and female speakers was weighted to obtain
an accurate value for the slope range. The entropy curve
obtained this way is shown in Figure 3.
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Figure 3: Entropy of quantization indices of unmodi�ed
/ae/ (solid), the �rst-order Markov model (dashed, top
curve) and random slope linear phase (dashed-dotted, bot-
tom curve).

Of course, the unmodi�ed data from the data base yield a
higher entropy, since for higher frequencies the power den-
sity spectrum has a more noise-like character.

The pulse train structure in the time-domain causes
strong dependencies in the phase spectrum. Therefore the
entropy decreases faster with increasing N than for un-
voiced speech, which is nearly Gaussian. Since this de-
crease is not as fast as for linear phase spectra, the real
phase spectrum presumably is between linear and random.
In conclusion, the entropy of quantization indices for a mod-
i�ed ensemble with linear phase spectra with random slope
gives a lower bound to the actual entropy.

3.4. Results for phonetic classes

Table 1 shows the results of the Gaussianity based method
for the phonetic classes used in the manual of TIMIT data
base [12]. Results for voiced phonemes must be regarded



as upper bounds to the actual entropy. This suggests that
the perceptual entropy of voiced stops and (af)fricatives is
lower than that of their unvoiced counterparts.

Table 1: Gaussianity based results for eight phonetic
classes. A sampling rate of 8 kHz was assumed.

Phonetic class Voicing Entr. Rate
(b/spl) (kb/s)

Stops + 0.96 7.68
- 0.95 7.60

A�ricatives + & - 1.00 8.00
Fricatives + 0.94 7.52

- 0.91 7.28
Nasal consonants + 1.20 9.60
Semivow. & glides + 1.43 11.44
Vowels + 1.39 11.12

Table 1 also indicates that a simple voiced/unvoiced
classi�cation is suboptimal when trying to minimize bit
rate. For instance, a voiced stop requires at most approx-
imately 0.96 bit/sample, while a voiced/unvoiced classi�-
cation would assign more bits to such a stop. However, a
more detailed classi�cation requires a larger delay, which
is undesirable in real-time coding. This limits the use of a
more detailed classi�cation to o�-line applications.

4. DISCUSSION AND CONCLUSIONS

Results for unvoiced phonemes presented in this paper dif-
fer considerably from the results of Kubin et al. [13] which
indicate there is almost no perceptual entropy in unvoiced
phonemes. They used a 10'th order linear predictor, and
for unvoiced phonemes replaced the residual with white
Gaussian noise. The residual of voiced phonemes was not
altered, and the prediction coe�cients were not quantized.
It was found that the quality of the reconstructed speech
was very good (4.0 on MOS scale). This di�erence for un-
voiced phonemes is explained by a number of reasons. First,
in [13] an MOS test was used, so that the original signal and
the coded signal may sound di�erent, although the coded
signal still sounds very good. We used a masking model
which only describes whether additive noise can or cannot
be perceived, but in general it does not describe whether
two signals are perceptually equivalent [14]. To achieve the
latter more detailed auditory models must be used. In [13]
no masking model was used, so that the original and recon-
structed speech may di�er by more than only the presence
of a masked additive noise signal. Hence the results are
not directly comparable. In addition, Johnston's masking
model may provide a lower bound on the masking threshold,
i.e., masking may be stronger than Johnston's model indi-
cates. Finally, in [13] \running" speech coding was used,
so that temporal masking, in particular postmasking [15],
may play a role by rendering unvoiced phonemes less well
audible.

From the results of this paper and cited papers, a num-
ber of conclusions can be drawn. First, short segments of
unvoiced speech are modeled accurately by a Gaussian dis-
tribution. Second, the quantization indices of unvoiced pho-
nemes obtained by using Johnston's masking model and

quantization procedure [2] are described by a �rst-order
Markov model. Third, the perceptual entropy of unvoiced
phonemes is lower than the upper bound on the perceptual
entropy of most voiced phonemes. This justi�es the assign-
ment of more bits to voiced segments than to unvoiced ones.
Fourth, when trying to minimize bit rate, results shown in
Table 1 indicate that a simple voiced/unvoiced classi�cation
is suboptimal. Multimode coders using a more detailed clas-
si�cation could exploit the di�erences in perceptual entropy
between the phonetic classes from Table 1. Finally, results
from [13] compared to those from this paper indicate that
waveform-approximating coding of unvoiced speech using
Johnston's masking model is unnecessarily restrictive for
good perceptual quality of reconstructed speech.
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