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ABSTRACT

In this paper, a speech rescoring system is developed on
a set of phonetic hypotheses produced by a bottom-up
knowledge-based decoder. An original method to auto-
matically compute a fuzzy membership function from
top-down acoustic rules statistics is compared with a
possibilistic measure. To aggregate the fuzzy degrees
into a phonetic score, a mutilayer neural network is
trained on the results of all the rules in order to detect
how these rules characterize di�erent phonemes and
then in order to give a weight to each rule. Rescoring
performance of top-down rules for fricatives will be dis-
cussed on an isolated-word speech database of French
with 1000 utterances pronounced by �ve speakers.

1. INTRODUCTION

Various methodologies for approaching the rescoring
problem have been proposed. [2] used a bayesian ope-
rator to aggregate probabilist scoring measures and [3]
described an HMM rescoring methodology by de�ning
a neural network that takes speech data as inputs and
produces as output the probability of a phoneme.

Instead, the goal of the present work is the compu-
tation of a fuzzy measure from insu�cient statistics in
a rule-based isolated-word recognition system, and the
use of a neural network operator that takes fuzzy num-
bers as inputs to assess the signi�cance and the weight
of each rule in order to optimize the computation of a
fuzzy phonetic score.

2. A FUZZY MEMBERSHIP FUNCTION

A bottom-up, rule-based, acoustic-phonetic decoder
retrieves and scores the phonetic hypotheses from a
speech signal [1]. To improve recognition performances
by rescoring the phonetic list, additional knowledge
sources (top-down rules) have been determined to ve-
rify coarticulation features. Applied to a phonetic hy-
pothesis, each rule returns a numeric parameter re-

lated to a fuzzy number via a procedure described in
[5] : a fuzzy set of rule parameters is made up and the
membership function CR () is drawn from one-speaker
database histograms.

Let F be the class of unvoiced fricatives. In �gure 1,
a 400-observation histogram HR1 is drawn for correct
recognition of F-phonemes by a given rule R, and a
250-observation histogram HR2 is drawn for non-F-
phonemes recognized as F-phonemes at bottom-up de-
coding (the vertical axis is the zero-crossing rate pa-
rameters returned by R). The few number of obser-
vations and the fact that the rule is only applied to a
one-speaker database explain why the statistics are not
su�cient for generalization, and why a fuzzy member-
ship function is needed.

[4] gives a method to compute a possibilistic func-
tion �i () from histogram HRi. The aggregation func-
tion � () = min (�1; 1� �2) is illustrated in �gure 1 :
the more is the possibility of an erroneous recognition,
the less must be the possibility of a correct recognition.

Our fuzzy function CR () is more robust to unrele-
vant histogram variations. In case of null probabilities,
the value of ignorance is 0:5. In case of a HR2 peak
higher than the corresponding HR1 peak, the CR ()
values are under 0:5. The possibility function � ()
is not able to distinguish between ignorance and a
higher HR2 peak.

3. USE OF A MULTILAYER NEURAL

NETWORK TO WEIGHT THE RULES

cij = CRi (Pj) are fuzzy numbers which correspond to
the degree of certainty to detect the phoneme Pj kno-
wing the result of rule Ri. Let Fj = [cij]0<i<n+1 be the
fuzzy vector for phoneme Pj where n is the number of
rescoring rules. To properly weight fuzzy degrees cij in
order to achieve an optimal phonetic score, we decided
to use a three-layer neural network (input, hidden and
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Figure 1: Histograms HR1 : good recognitions, HR2 :
bad recognitions, and the possibilistic function �() and
fuzzy function Cr(), for the rule R designed in order to
characterize unvoiced fricatives

output layers) that would recognize a phoneme with Fj
the fuzzy vectors as inputs. The analysis of the weights
of the network will then give an idea of the signi�cance
of the rules.

As an illustration, we tried to separate the fricative
phonemes (v, z, j, f, s, ch) from the others. We used a
�ve-speaker corpus composed of examples of 33 french
phonemes, described through 36 rules, each rule giving
a score in [0;100]. So we have 48944 examples with
6264 fricatives : 828 f, 2159 s, 252 ch, 1665 v, 898 z
and 462 j.

3.1. Learning procedure

To �nd which inputs are really relevant, the network
must not be too big (adaptation to the corpus and
poorer generalization scores), so we pruned all super-

uous nodes [8]. Label errors that can be present in
the corpus must be detected and overtraining must be
avoided, so we used a selective learning algorithm [9].

We could then build a (36, 12, 1) network that
learns the whole corpus with a 0.2% error rate (the
di�erence between the expected and the network res-
ponse is over 0.5 in [0; 1]). These errors are coherent

with usual results for the fricative recognition prob-
lem : 5 d, 13 t, 2 p (these are occlusives that may have
fricative features depending on the context) and 6 j,
6 z, 20 f, 25s, 29 v. The v is actually the most di�cult
fricative phoneme to recognize because of its shortness
(its pronounciation is greatly a�ected by neighbouring
vowels).

3.2. Input hierarchy

We know since [7] that multilayered neural networks
in classi�cation are making a discriminant analysis of
the inputs, so somewhere in their structure is the infor-
mation we are looking for. In [6], we can measure the
features signi�cance by testing the e�ect of a variation
of each input for each example, that means a lot of
calculus. We reach the same results (0.92 correlation)
with a much more e�cient method inspired by [10] :
@output

@input
.

Since each input varies in [0;100], the only weights
are signi�cant of the inputs importance, and their signs
give an idea of the activation / inhibition power. Using
the sigmo��d f (x) = 1
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with Wij the weight from input i to hidden node j,
Vi the weight from hidden node i to the output, and
Lj = fl = Vl �Wjl < 0g, Kj = fl = Vl �Wjl > 0g.

We know then the activation (Kj) / inhibition (Lj)
power for each input and their range give the discri-
mination power (Kj + jLjj).

3.3. Relevance of the rules

For our fricative recognition problem, we can quantify
which rules are the most e�cient, and which ones are
super
uous. This quanti�cation allows us to establish
the weight of each fuzzy number as input when aggre-
gating Fj = [cij ] to a score for phoneme j:

� rules 1, 3, 4 and 21 each represent less than 0.5%
of the network weights (instead of an average
3%). Indeed, these rules were designed to ve-
rify non-fricative features. Surprisingly, one rule
which was not initially proposed to distinguish
fricatives reaches 11%. Thus, results of the net-
work can help the phoneticians to �nd other regu-
larities in the speech signal. Occlusive rules 30-24
give good results as well to distinguish the frica-
tives. Conversely, the zero-crossing rate fricative



rule gives weak results (1%), showing that it can
not be trusted in a multi-speaker environment
(too wide variations).

� fricatives rules 36, 20 and rule 9 activate a frica-
tive response, whereas occlusive rules 30-24 and
other rules 19-16 are just used for inhibition pur-
poses. The remaining rules give both e�ects, and
so do not accurately characterize fricatives.

After pruning the weakest rules, we kept a very low
error rate (121 errors instead of 106 out of 48944 exam-
ples). Althought working with the whole corpus dimi-
nishes the risk of biased learning results, a perspective
is to repeat our experiments by learning on a limited
corpus and by testing the remaining data to study the
e�ect of inputs selection upon generalization. But our
goal here was just to �nd how to weight the rules, and
not to build a neural network based recognition system.

4. RESCORING PERFORMANCE

The isolated-word recognition corpus consisted of 1000
words selected from the BDLEX database and pro-
nounced by �ve speakers (these examples are not in the
corpus used for the neural network training). To reduce
a phonetic list and then to diminish lexical hypotheses,
the experiment consisted of testing the rescoring abi-
lity of 36 top-down rules on fricatives generated by a
bottom-up decoder. This one produced 3262 correct
fricatives and 3041 hypothesized fricatives which are
not fricatives actually.

Table 1 shows the phonetic rejection rates with-
out rescoring (from bottom-up scores), table 2 gives
the rejection rates with experimental weights jcij�0:5j
(named OWA rescoring) and table 3 the rejection rates
when aggregating the fuzzy degrees cij with neural
weights. The right column of the tables shows the rejec-
tion rates of erroneous fricative hypotheses (we expect
these rates to be high in a robust rescoring system), and
the middle column shows the rejection rates of correct
fricative hypotheses (we expect these rates to be low).

Thresh. fric. reject. non fric. reject.

40 0% 3.2%
61 9.5% 26.4%
71 27% 50.4%

Table 1: Rejection rates on fricatives without rescoring

The �rst table shows bad results if no rescoring pro-
cedure is used. With neural rescoring, the phonetic list
can be reduced down to 25% of its wrong fricatives

Thresh. fric. reject. non fric. reject.

22 0% 1%
28 2.5% 25%
35 6.7% 52%

Table 2: Rejection rates on fricatives with OWA resco-
ring

Thresh. fric. reject. non fric. reject.

36 0% 2.8%
40 1.8% 25.1%
71 5.9% 51.8%

Table 3: Rejection rates on fricatives with neural
rescoring

(column "non fric. reject.") with less than 2% correct
phoneme rejection (column "fric. reject."). It proves
that additional acoustic-phonetic rules provide a set of
discriminant information to recognize the fricatives.

Besides, the neural rescoring procedure was ob-
served to give a slight but signi�cant improvement
(with a 95% con�dence interval, � = �0:8) over the
OWA rejection method (more correct fricatives are re-
jected by this latter method). Note that the neural
weighted sum provided better performance if average
fuzzy degrees (cij = 0:5) are ignored (they mean either
ignorance or high uncertainty).

Nevertheless, the multi-speakers OWA rejection
rates are encouraging since this method needs only a
small one-speaker corpus to be e�ective. The fuzzy
approach allows a robust modelling stage of an incom-
plete body of certainty.

It is also interesting to note that the so-called fuzzy
acoustic-phonetic decoder applies an automatic least-
commitment decision-making strategy once the acous-
tic rules are determined. Expert decision thresholds
and meta-rules are avoided in such a system.

5. CONCLUSION

An original method to automatically compute a fuzzy
membership function from insu�cient statistics (a li-
mited corpus of one-speaker speech signals) has been
proposed in the attempt to assess phonetic rescoring
performance in a rule-based speech recognition system.
A weighted sum operator was chosen to aggregate fuzzy
numbers into a phonetic score. The use of a neural
network was proposed to establish the weights of the
rules when computing the aggregation operator.



The neural network allows to distinguish relevant
and unrelevant rules for a given phonetic class, that is,
rules which give a high discriminative rate in a multi-
speaker environment. Experimental results on frica-
tives demonstrated that the neural network provides a
way to perform an encouraging fricative rejection rate.

The future of this work will lead us to verify these
results on other phonetic classes and to apply the fuzzy
decoding approach to a "state-of-the-art" hybrid recog-
nition system with a stochastic agent as the bottom-up
decoder and with neural networks as additional top-
down agents.
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