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ABSTRACT

In the �eld of speech recognition, the patterns assumed
to structure the speech material (phonemes, triphones,
words...) are de�ned a priori according to a linguistic crite-
rion, whereas the recognition criterion is based on an acous-
tic similarity measure. From this may result a lack of con-
sistency for the recognition units. In this paper, we explore
the possibility of a more data-driven approach, where recog-
nition units are derived according to an acoustic criterion,
and then, mapped to variable length sequences of phonemes
in an unsupervised way. Continuous speech recognition ex-
periments are reported to evaluate the consistency of those
units as opposed to linguistically de�ned units.

1. MOTIVATIONS

Continuous speech recognition performance is a�ected by
the choice of the appropriate unit for acoustic modeling.
As an alternative to the traditionnal linguistically de�ned
units, some e�ort is being put into the de�nition of recog-
nition units based on an acoustic criterion, like for instance
in [1] [2]. In those works, the phonetic content of the recog-
nition units is not known a priori, but usually the number
of distinct units, and the length of the associated models
are set in advance. Conversely, in this paper, we propose a
procedure for deriving acoustic units, the number and the
length of which also result from the derivation process. In
section 2., we present the general multigram framework on
which our approach relies, and in section 3., we show how it
can be applied to infer acoustic recognition units. Finally,
in section 4., we report experiments on continuous speech
recognition, where the performances of systems based on ei-
ther acoustic multigrams or linguistic units are compared.

2. THE MULTIGRAM FRAMEWORK

2.1. Formulation of the Multigram Model

The multigram approach [3] [4] can be understood as a pro-
duction model. A source emits a string Z of units, called
multigrams, drawn from a limited set fzig. Each multigram
gives rise to a variable-length sequence of elementary obser-
vations. The only observable output of this process is the
string of observations O, resulting from the concatenation
of all sequences. Given an observed string O, we want to
retrieve the set of distinct underlying multigrams fzig, and
to identify in O the observation sequences originating from
a common multigram. Locating multigrams in a string O
involves �nding a segmentation S of O:
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Z: z(i1) z(i2) z(i3) ...
* * *

S: [ o(1) o(2) ] � [ o(3) ] � [ o(4) o(5) o(6) ] ...
*

O: o(1) o(2) o(3) o(4) o(5) o(6) :::

The optimal set of multigrams is derived by maximizing
jointly both the likelihood of the data and of the set fzig:

fzig
� = argmax

fzig
L(O j fzig) L(fzig) (1)

The �rst term in (1), L(O j fzig), measures how well the
data �ts a given set fzig. It is computed as:

L(O j fzig) =
X
(S;Z)

L(O; S; Z j fzig)

The second term in (1), evaluates the likelihood of the set
fzig itself1. The a priori distribution of all possible sets is
not known, but, according to information theory, L(fzig) is
related to the number of bits required to fully specify the
set fzig. Including this term in the optimization criterion
aims at balancing the best �t to the data with the least
complexity, evaluated as a number of bits. It is based on
MDL2 approaches [5], the expected advantage of which is
to reduce the risk of overlearning frequently noticed whith
ML estimations [6]. The segmentation and the string of
patterns assumed to underly O are:

(S�
; Z

�) = arg max
(S;Z)

L(O; S; Z j fzig) (2)

2.2. Case of Independent Multigrams

In the case multigrams are assumed to be independent, the
likelihood of data structured by (S; Z) can be expressed as:

L(O; S; Z j fzig) =
Y
t

p(s(t) j zit) p(zit) (3)

where s(t) denotes the observation sequence corresponding
to the multigram zit , of rank t in Z. The model is thus
fully described by the prior distribution of the multigrams,
fp(zi)g, and by the set of distribution functions, fp(::: j zi)g,
which characterize the variability of the sequences observed
for each multigram zi. The maximization of the data likeli-
hood expressed in (3) tends to favor the inference of highly
recurrent multigrams having a low variability. Besides, as
specifying a multigram of probability p(zi) requires a mini-
mum of � log p(zi) bits, the minimization of the complexity
leads to disqualify multigrams of low probability.

1In traditionnal approaches, this set is usually �xed to a pre-
de�ned set of linguistic units, and its likelihood value is not taken
into account.

2Minimum Description Length



3. APPLICATION TO SPEECH
RECOGNITION

3.1. Reformulation of the Recognition Process

Recurrent patterns extracted from strings of acoustic obser-
vations can be used as acoustic units for speech recognition.
A recognition task is usually formulated as the determina-
tion of the linguistic string L�

te, of maximum likelihood,
given an acoustic string Ote:

L
�
te = argmax

L
L(L j Ote) = argmax

L
L(Ote; L)

The set fzig de�nes a level of intermediate representation
Z between the acoustic and linguistic levels, so that:

L
�
te = argmax

L

X
Z

L(Ote; Z; L) (4)

To reduce computational costs, the assumption is made that
there exists a single optimal intermediate representation
Z�
te, which accounts for most of the data likelihood, and

Z�
te is searched for independently from L. The decoding of

a test string Ote is thus a 2-step procedure: �rst, an acous-
tic decoding, to retrieve the most likely underlying structure
(S�

te; Z
�
te), and second, a linguistic decoding, to retrieve the

phonetic string bL�
te, which most likely matches Z�

te:

bL�
te = argmax

L
L(Z�

te; L) (5)

To compute L(Z�
te; L), a probabilistic model enabling to

measure the quality of a mapping between an intermedi-
ate representation and a linguistic representation has to be
preliminary estimated. At this stage of the decoding, a lin-
guistic component can be used to evaluate the likelihood of
L, just as is usually done in a classical recognition system:

ebL�

te = argmax
L

L(Z�
te j L) L(L) (6)

3.2. Inference of the Acoustic Units

� Nature of the acoustic observations The observed
string O is a stream of continuous-valued vectors, issuing
from Temporal Decomposition (TD). TD [7] is a model of
spectral evolution, which describes a speech segment as a
linear combination of a limited set of vectors called tar-
gets. The temporal contribution of each target is expressed
by an interpolation function (cf. Figure 1). As spectral
characterizations of acoustic events, the target vectors are
expected to show less variability than the original frames,
hence multigrams are searched for as variable-length se-
quences of TD target vectors.
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Figure 1.
A graphic illustration of Temporal Decomposition (TD)
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Figure 2. De�nition of an initial set of HMM.

� Characterization of each multigram Each multigram
zi is associated to a Hidden Markov Model (HMM), char-
acterizing its modeling variability. Consequently, the infer-
ence of a set of multigrams can be viewed as the inference
of a set of HMM. Note that it is altogether the number of
distinct HMM, as well as their number of states, which need
to be inferred.
� De�nition of an initial set of HMM (cf. Figure 2)
Each target vector is quantized and replaced by a symbol,
called acoustic symbol, denoting its quantization class. In
the resulting string of acoustic symbols, any combination
of n (n � nmax) symbols occurring more than a prespeci-
�ed threshold, leads to de�ne a left-to-right n-state HMM.
Each state parameters are initialized with the mean and
covariance values of the corresponding quantization class.
� Iterative reduction of the set of HMM The data
likelihood and the complexity of the model are alternately
optimized, through an EM procedure. Given (S�(k); Z�(k))
the most likely underlying structure at iteration (k), itera-
tion (k + 1) consists of two steps:

- modi�cation of the set fzig
(k) into fzig

(k+1) to reduce its
complexity: multigrams occurring less than a prespeci�ed
number of times in (S�(k); Z�(k)) are removed from fzig

(k),
- reestimation of the parameters of the remaining models to



maximize the data likelihood, L(O j fzig
(k+1)); the a priori

probability of each multigram is reestimated as its relative
frequency along Z�(k), and the parameters of its HMM are
reestimated using the Baum-Welch algorithm.
Iterations are stopped when the set of units becomes sta-
ble. Note that a major drawback of this inference process
is that it does not o�er the possibility to create new HMM,
even though it might improve the accuracy of the acoustic
modeling, without dramatically increasing its complexity.
�A posteriori mapping with phonetic sequences The
HMM issuing from the last iteration of the inference pro-
cess are used to produce the most likely transcription of
the target vectors into acoustic symbols. It is obtained by
reporting the acoustic symbols corresponding to the states
visited during a Viterbi recognition procedure. The tran-
scription into acoustic symbols is aligned on the transcrip-
tion into phonetic symbols, through a probabilistic many-
to-many mapping based on the joint multigram model [8].
This procedure jointly parses the two strings according to a
ML criterion, matching variable-length sequences of acous-
tic symbols with variable-length sequences of phonemes. It
results in a dictionary, where pairs of acoustic and phonetic
sequences are assigned a probability of co-occurrence. This
mapping is performed regardless of the boundaries of the
words in the utterances, which are not known.

3.3. Acoustic and Linguistic Decoding

During the acoustic decoding, the most likely transcription
into acoustic symbols of a test stream of TD target vectors
is retrieved, using the HMM issuing from training. Then, it
is decoded into a string of phonemes (Equation (5) or (6))
using the probabilistic mapping provided by the dictionary
of joint multigrams.

4. EVALUATION OF ACOUSTIC
MULTIGRAMS

We report comparative evaluations of several recognition
systems based on multigrams, and of reference systems3.

4.1. Preparation of the Database

Recognition experiments are conducted on a French
database of continuous speech, consisting in sailing weather
forecasts (vocabulary of about 400 words), uttered by a sin-
gle male speaker, and digitally recorded from the radio at
16 kHz. 60 minutes of speech are used for training, and 30
minutes for testing. TD target vectors are computed from
10 ms frames of 16 LPCC parameters.

4.2. Experimental Protocol

Acoustic component based on multigrams The in-
ference procedure described in section 3.2. is applied, using
either 32, 64 or 128 distinct acoustic symbols to quantize
the target vectors. A HMM is de�ned for any combina-
tion of at most 5 acoustic symbols, occurring more than
20 times; consequently, HMM may have 1 up to 5 states.
During the inference process, HMM having a number of oc-
currences which is less than 10 are discarded. The process
is stopped after 5 iterations, as it was empirically noticed
to end up with a roughly stabilized set of HMM. During
the joint multigram mapping procedure, sequences of up
to 5 acoustic symbols are paired with sequences of up to 5
phonemes.

Acoustic component based on linguistic units
Three reference systems based on recognition units which
are either phonemes, triphones, or words are build, also us-
ing the TD target vectors as training observations. Their
acoustic components comprise, respectively:

3The estimation and recognition procedures involving HMM
are performed using the HTK tool kit.

- 35 HMM modeling the French phonemes,
- 1599 HMM modeling the triphones occurring more than
3 times in the training utterances; the 35 models of the
phoneme based system are added to this set to ensure an
exhaustive phonetic coverage,
- 401 HMM modeling the words of the training vocabulary.
Besides, a 1-state HMM modeling silence, and a 1-state
HMM modeling breath noise are added to each reference
system. Due to the use of TD target vectors as state
emissions, all HMM in the reference systems have only 1
state per phoneme4. As the database is not segmented
into phonemes, nor even into words, the initial models are
aligned on the training stream of target vectors, proportion-
nally to their number of states. Then, a step of reestimation
of the model parameters and a step of realignment of the
models on the training set are alternately repeated, till a
converged alignment is reached.

Linguistic Component Apart from the training of the
acoustic components of all systems, a bigram language
model is estimated, which assigns an uniform probability
distribution to all unknown combinations of 2 words. The
perplexity values computed with this model on the train-
ing and on the test sets are respectively 6.3 and 9.8. For
bigrams of words to be usable within the multigram recogni-
tion framework (decoding according to (6)), the succession
of the decoded phonetic sequences must comply with con-
straints of lexicality. At each step of the decoding process,
the set of possible candidates is restricted to those sequences
of phonemes only, the concatenation of which still preserves
the lexicality of the resulting string. In the case of a sys-
tem based on phonemes, or on triphones, the HMM are
concatenated to form models of words.

4.3. Analysis of the results

Number of quantization classes The results obtained
by using either 32, 64 or 128 distinct acoustic symbols are
in Table 1. As the number of quantization classes is higher,
the number of distinct acoustic units increases. It is to
be interpreted as an over partitionning of the speech se-
quences, since the average number of acoustic sequences
matched with a common phonetic sequence, after the joint
multigram mapping process, also increases. The recogni-
tion scores deteriorate accordingly from 76.1 % to 69.1 %
word accuracy for experiments based respectively on 32 and
on 128 acoustic symbols. Thus, it seems that, on a single
speaker database with a limited vocabulary, a clustering
into a relatively small number of classes (32) is enough.

Temporal decomposition Some experiments were con-
ducted on the initial frames to evaluate how suitable a spec-
tral representation based on TD is for the inference of acous-
tic units. The quantization of the frames, instead of the TD
targets, produced a highly instable succession of acoustic
symbols (alterned repetitions of 2 symbols for instance), so
that it was not used to initialize a set of HMM. But, once
an initial set of HMM is de�ned using a string of quantized
TD targets, the inference process can be pursued with the
initial frames as state emissions5. In our experiments, it re-
sults into an increased number of insertions: when using 64
distinct acoustic symbols, the phonetic accuracy on the test
set deteriorates from 68.6 % to 64.4 % (while the percentage
of phonemes correctly identi�ed remains unchanged).

4The number of TD target vectors is 4.7 less than the number
of initial frames, so that the average number of target vectors per
phoneme approximately equals 1.6.

5The temporal information necessary to locate the frames cor-
responding to each TD target is provided by the interpolation
functions.



Number of distinct acoustic symbols
32 64 128

Number of HMM
613 755 875

Average number of acoustic sequences
per sequence of phonemes

1.7 1.9 2.2
Phonetic accuracy with no language model

70.6 68.6 66.2
Word accuracy with a bigram model
76.1 74.2 69.1

Table 1.
Comparison of systems based on multigrams.

Acoustic modeling of
phonemes triphones words multigrams (32)

Number of HMM
37 1636 403 613

Average frequency of a model on the training set
1280.0 29.9 34.6 30.4

Average number of states per model
1 1 4.7 3.5
Phonetic accuracy with no language model
47.0 55.5 81.2 70.6

Word accuracy with a bigram model
83.9 86.5 82.3 76.1

Table 2.
Comparison of systems based on multigrams

and on linguistic units.

Comparison with the reference systems The results
obtained with the reference systems and with the multi-
gram system based on 32 acoustic symbols are in Table 2.
When no model of language is used, the recognition scores
evaluate the reliability of the acoustic modeling within each
system, and also, in the multigram case, the reliability of
the probabilistic mapping between the sequences of acoustic
symbols and of phonemes. The phonetic accuracy obtained
with multigram units (70.6 %) is intermediate between the
scores obtained with triphones6 (55.5 %) and with words
(81.2 %). The motivation for inferring acoustic multigrams
is to �nd a set of units being altogether the most recurrent
and the least variable as possible. Now, assuming that the
average variability of recognition units is directly related
to their average length7, words better comply with those
requirements than the multigrams derived in our experi-
ment. Indeed, not only the average length of the words,
measured by the average number of states per model, but
also their average frequency in the training data, are higher
than those of the multigram units. The same is true for the
multigrams with respect to the triphones, the former tend-
ing to be more recurrent and longer units than the latter.
Scores turn out to be ranked accordingly.
The use of a bigram language model compensates for the rel-
ative lack of reliability of the phoneme and triphone models,
which, in this case, outperform the models trained on words,
with word accuracies of respectively 83.9 % and 86.5 %. The
integration of this language model with the acoustic com-
ponent based on multigrams, though also quite pro�table,

6at least when, like in our experiments, no model interpo-
lation, nor tied estimation techniques are used to warrant the
reliability of the estimates for the models of triphones.

7Of course, it is also related to the number of distinct units
among which speech segments are partitionned: triphones are of
the same length as phonemes, but they provide a more re�ned
partionning of the data.

does not allow to exceed a 76.1% word accuracy. Since con-
versely, in our experiments, multigrams used without any
language model, give better results than phonemes and tri-
phones, it clearly indicates that the way the multigram level
and the linguistic level have been interfaced is not optimal.
We identify at least two possible major tracks for improve-
ment. First, the decoding could be performed using (4)
rather than (5), so that the output of the recognizer would
be determined by summing the likelihood values of multi-
ple acoustic transcriptions, instead of being derived from
the single best transcription Z�

te. Second, the joint multi-
gram mapping, which associates a closed list of phonetic
sequences to a sequence of acoustic symbols, lacks exi-
bility, especially when lexical constraints are applied. For
instance, it may happen that a sentence cannot be retrieved
using only the sequences, which are mapped to an acoustic
sequence with a non zero probability. A more exible ap-
proach would be, for instance, to have a production model
of phonetic sequences associated to each acoustic sequence,
instead of a closed list.

5. CONCLUSION

Our work explores the possibility of deriving acoustically
consistent units from continuous speech. The units are
then matched to variable-length phonetic sequences in a
fully unsupervised way, and used for speech recognition.
This approach is a step towards a more data-driven acous-
tic modeling; it aims at eliminating the problem of having
to decide a priori on the nature of the recognition units,
which, conversely, are derived so as to allow the best �t to
the data, as well as the most reliable estimates. In our ex-
periments, the recognition scores obtained with models of
acoustic multigrams are intermediate between the perfor-
mances of systems based on triphones and on words. With
the use of a lexicon of words and the integration of a bi-
gram language model, triphones and phonemes outperform
the multigram units. Further e�ort should be put into a
representation of lexical entries from a posteriori acoustic
units.
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