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ABSTRACT
Two systems (Statistical Trajectory Models (STM) and con-
tinuous density HMMs) utilizing three preprocessing metho-
dologies (MFCC, RASTA and FBDYN) were evaluated on
two databases, namely CTIMIT and the corresponding down-
sampled TIMIT. Within the bounds of the experimental setup
the comparative performance analysis showed that the STM
significantly outperforms the HMM system on the CTIMIT
database. Specifically, the performance of the STM sys-
tem was found to be at least 10% better as compared to
the one obtained by HMM when the RASTA preprocess-
ing was used. The performance of both systems with FB-
DYN parametrization was found to be inferior to those using
MFCC and RASTA. On the other hand, in low-noise condi-
tions on the TIMIT database FBDYN yielded an improved
performance for the HMM system, whereas STM achieved
the best results with the MFCC parametrization.

1. INTRODUCTION

Statistical Trajectory Models (STM) have been shown to
be a promising approach in automatic speech recognition
at low noise-level conditions [4]. To date, however, no re-
search has been reported which evaluates their performance
in celluar environment with its inherent low signal-to-noise
ratios and occasionally drop outs.

Due to the increasing global importance of mobile com-
munications and the availability of a multi-speaker, contin-
uous speech database collected over the cellular network
CTIMIT [2], it is clear that the robust speech recognition
and processing in cellular environments will become an im-
portant and challenging subject for research.

Based on these facts we have decided to evaluate the
effectiveness of an alternative approach of STM and the tra-
ditional HMMs in a comparative performance analysis. Our
experiments encompasses two databases (CTIMIT and the
corresponding downsampled (8kHz) TIMIT), two systems
(STM [4] and the HTK v2.0 [9]), and three preprocessing
methodologies (MFCC, RASTA [5], and FBDYN [1]).
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The paper is organized as follows. Section 2 highlights
the major characteristics of the CTIMIT and the correspond-
ing downsampled TIMIT databases. Section 3 briefly over-
views the STM and HMM systems chosen for the experi-
mental part of this work. Results from the comparative per-
formance analysis are divided into two parts and summa-
rized in Section 4. The first part (Section 4.1) discusses the
overall performace scores in phonetic classification exper-
iments. The second part (Section 4.2) summarizes results
from the rank-order statistics on the confusion matrices for
each of the experiments. Finally, Section 5 presents conclu-
sions and some possible future research directions.

2. DATABASES

CTIMIT corpus [2] is a cellular bandwidth complement to
the TIMIT database [7]. Its creation is in principle simi-
lar to that of the NTIMIT (network TIMIT [6]), i.e. the
TIMIT, originally recorded under clean channel conditions,
was transmitted over the cellular network, digitized at a rate
of 8 kHz, and organized into a directory structure corre-
sponding to that of the TIMIT database. Thus, CTIMIT
maintains the carefully designed phonetic coverage coupled
with the effects added by cellular communication environ-
ments and transmission characteristics.

We have used the 1.0 alpha version of CTIMIT which
consists of 3367 (out of 6300) TIMIT sentences. Other lim-
itations in using this corpus include the use of a single ve-
hicle in collection, a single receiving phone line, a limited
number of cell phones used, no hands-free mode simulation,
and a lack of documentation of call conditions. Online doc-
umentation, however, specifies that the last two (out of 7)
recording sessions are relatively low quality cellular chan-
nels characterized by considerable interference and a high
dropout rate. An example of this is depicted in Figure 1.
Two main conclusions can be drawn from this. Firstly, if
such an utterance is provided to the system analyzed in this
paper as a training token, the corresponding phonetic tran-
scription needs to berespecifiedin order to maintain a con-
sistent model training. Secondly, dropouts need to be han-
deled in the recognition framework to achieve robustness



Figure 1: An example of a dropout present in the CTIMIT database. Upper trace: Original TIMIT utterance. Middle trace: cor-
responding CTIMIT utterance. Lower trace: phonetic labels. The example shows that complete phoneme sequences
are missing or portions of phonemes are cut in the CTIMIT utterance.

due to randomly missing data.
In order to make the analysis as realistic as possible, we

downsampled the 3367 original TIMIT utterances to an 8
kHz sampling rate to match that of the CTIMIT. The delay
of a downsampling FIR filter was compensated for in order
to preserve proper alignment of the phonetic transcriptions.
2465 utterances present in the training part of the database
were used as a training set, and another 902 in the test part
as a test set.

3. SYSTEMS

Recently, several alternative modeling paradigms, broadly
classified assegment models[8], have been proposed within
the area of ASR. Segment models may be considered as
generalized HMMs, i.e. higher dimensional HMM models,
where Markov states generate sequences rather than a single
vector observation. This enables to overcome limitations of
the standard HMMs, such as poor duration modeling, as-
sumptions on conditional independence and restrictions im-
posed by frame-based observations.

3.1. Statistical Trajectory Models

Goldenthal [4] has demonstrated that the STM represent
a viable alternative in ASR, capable of achieving virtually
identical performance as that of the state-of-the-art HMMs

under low-noise conditions. STM is a segment-based ap-
proach capable of capturing the dynamical behaviour and
statistical dependencies of the acoustic attributes represent-
ing a speech waveform.

3.2. Hidden Markov Models

The most flexible and widely known tool for experiments
with HMMs is the HTK [9]. We used the HTK version
2.0 in our experimental work. One of the main goals in
the comparative performance analysis was to get an insight
into the principal ASR paradigms, e.g. what is the differ-
ence in performance betweenbaselineHMMs and the STM
approaches. Therefore, delta and acceleration coefficients
wereexcludedfrom the input speech representation and sys-
tems werenotexhaustively optimized.

A comparison between the STM and HMMs was car-
ried out by applying a HMM architecture optimized in our
previous experiments on the OGITS telephone bandwidth
speech database [3].

4. EXPERIMENTS

HMM and the STM systems were evaluated using three pre-
processing methodologies (MFCC, RASTA [5], and
FBDYN [1]) running the experiments using two databases,



namely the CTIMIT and the downsampled TIMIT. The pa-
rameters for the mel-frequency cepstra (MFCC) were: Ha-
mming window duration 16ms, frame period 5ms, number
of output parameters 16 + additional zero’th cepstral coef-
ficient (MFCC0), analysis order 32. The RASTA coeffi-
cients were computed from the mel-frequency cepstra using
the filter

H(z) = 0:1 z4
2 + z�1 � z�3 � 2z�4

1� 0:98z�1

FBDYN parameters used identical forwardlk(n) and back-
wardrk(n) masking Gaussian lifters defined by

lk(n) = rk(n) = ��n�1 exp

�
�

k2

2(q0 � �(n� 1))2

�

wheren denotes the time delay andk the order of the cep-
stral coefficient vector component. The values of� = 0:08,
� = 0:78, q0 = 18, � = 1 were used. Since a 5ms frame
period was used, the duration of the forwardNf and the
backward masking effectNb was set toNf = Nb = 6, i.e.
30ms.

The STM system was implemented (for details and def-
initions of the STM parameters, see [4]) using a trajectory
invariant generation functionTraj2, i.e. fractional linear in-
terpolation with fixed endpoints, proven to be the most ef-
ficient in [4]. The tracks had 10 states and the parameterQ

(the number of sub-segments in averaging the errors) was
set to 3. As the number of input parametersP = 17 was
used, the resulting joint-Gaussian probability density func-
tion statistical model based on the error signal resulted in a
dimension ofPQ = 51.

The HMMs used were 5 state, one skip, two mixture
left-to-right models [3]. No grammar was used during the
phonemic classification experiments reported in the next sec-
tion.

4.1. Phonemic Classification Results

The 61 phones used originally in the database were first re-
labelled into the 38 models used for training, as defined in
[4]. The results from the phonemic classification experi-
ments are summarized in Table 1.

The results show that for the CTIMIT the STM achieved
at least 10% better phonemic classification than the HMM
system. For both systems the RASTA preprocessing yielded
the highest recognition scores. FBDYN preprocessing was
found to perform poorer than the MFCC and RASTA. A
possible explanation for a significantly worse performance
of FBDYN using HMMs is that while dynamic cepstra em-
phasizes the transitions, the chosen number of mixtures was
insufficient to model the increased variability in the data.

When comparing these results with the ones obtained on
the TIMIT database we see that the absolute differences in

performance between the two systems are relatively smaller.
It is interesting to note that in this case the RASTA prepro-
cessing yielded worse performance than the MFCC for both
the STM and HMM systems. The most efficient preprocess-
ing for the STM system was found to be the MFCC, while
for the HMM the dynamic cepstra yielded an improved per-
formance.

CTIMIT

STM
performance MFCC RASTA FBDYN
training set 43.43% 44.43% 38.00%
test set 36.84% 37.87% 32.26%

HMM
performance MFCC RASTA FBDYN
training set 24.98% 29.20% 22.80%
test set 23.43% 27.84% 22.29%

TIMIT (8k)

STM
performance MFCC RASTA FBDYN
training set 61.02% 57.39% 53.94%
test set 54.87% 51.08% 48.56%

HMM
performance MFCC RASTA FBDYN
training set 53.97% 50.42% 55.10%
test set 52.30% 48.08% 53.45%

Table 1: Performance scores of the STM and HMM systems
in phonemic classification on the CTIMIT and downsam-
pled TIMIT databases.

4.2. Confusion Matrix Analysis Results

A rank-order statistical analysis was conducted on the con-
fusion matrices to determine the phonemes which achieved
the best classification scores. A general conclusion is that
for both systems tested on CTIMIT, the highest performance
was achieved on the diphthongs, e.g. /ay, ae, iy, oy/. This
is an expected result since in noisy cellular environment
phonemes with high spectral dynamics should in principle
be easier to recognize and less prone to noise.

On TIMIT, however, phonemes such as /w/ and /f/ also
achieved a very good classification performance. This is
not surprising since at high signal-to-noise ratio conditions
these phonemes exhibit spectral characteristics discriminant
enough to be relatively easily recognized.

Detailed results on top five rank-order statistical analy-
sis on confusion matrices are summarized in Table 2.



CTIMIT

STM
MFCC RASTA FBDYN

rank phon % corr phon % corr phon % corr
1 ay 63.2% b 76.9% ae 65.9%
2 ae 59.3% ay 62.1% ay 58.4%
3 aa 55.1% ae 56.4% s 56.4%
4 iy 52.5% oy 56.1% aa 55.0%
5 oy 52.0% ey 53.8% ey 54.1%

HMM
MFCC RASTA FBDYN

rank phon % corr phon % corr phon % corr
1 ay 54.2% oy 58.8% w 51.3%
2 oy 48.6% ay 58.4% ay 47.1%
3 w 45.7% aw 54.3% aw 46.5%
4 ae 44.2% ae 52.2% ae 46.2%
5 aw 42.6% ey 50.8% aa 43.7%

TIMIT (8k)

STM
MFCC RASTA FBDYN

rank phon % corr phon % corr phon % corr
1 ay 75.2% b 80.3% ae 73.0%
2 s 71.1% w 72.2% ay 72.8%
3 w 70.1% y 71.4% s 69.1%
4 r 68.9% oy 70.9% ey 69.0%
5 hh 68.8% ay 68.0% aa 67.0%

HMM
MFCC RASTA FBDYN

rank phon % corr phon % corr phon % corr
1 f 71.6% oy 69.6% f 72.8%
2 oy 68.2% ay 64.9% w 65.4%
3 w 65.4% w 59.2% y 65.2%
4 y 63.7% iy 57.0% sh 62.2%
5 ay 59.5% ey 55.0% ay 60.6%

Table 2: Top 5 performance scores from the confusion ma-
trix analyses of the STM and HMM systems in phonetic
classification on the CTIMIT and the downsampled TIMIT
databases.

5. CONCLUSIONS

The performance results of the STM approach were found
to be significantly better than those of the HMM on CTIMIT
and the 8kHz-downsampled TIMIT databases. Neither of
the systems was optimized. In phonetic classification exper-
iments on CTIMIT, the STM yielded a 10% improved per-
formance over the HMM when RASTA preprocessing was
used. In noisy cellular environment both systems achieved
the best performance using the RASTA preprocessing. In
general for both systems, confusion matrix analyses revealed

that the highest classification results were achieved for the
diphthongs.

Given the insights obtained from the phonetic classifi-
cation experiments, future work will be concentrated on an
improved STM modeling for cellular environments and on
implementations necessary for recognition experiments.
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