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ABSTRACT

Continuous digit recognition over the telephone chan-

nel is a key technology for many telecommuncations ap-

plications such as voice dialing, automatic banking, and

credit card number entry. Speech recognizers usually

acheive high performance by modeling the acoustics in

Hidden Markov Models (HMMs) using large numbers

of multivariate Gaussian mixtures with assumed diag-

onal covariance in order to model the variability of dif-

ferent speakers and channel conditions. In this paper,

we present a system that uses single mixture 16 feature

Gaussian distributions with an assumed identity covari-

ance to achieve 1.0% word error and 5.7% sentence er-

ror rate on the Macrophone corpus. We found that

inter-digit modeling, discriminant training, and per-

utterance adaptation can each contribute about 30%

reduction in error rate. Using this approach, we can

realize a system with relatively low memory require-

ments.

1. INTRODUCTION

Many telecommunication speech recognition applica-

tions require rapid, accurate continuous-digit recogni-

tion technology. Typical applications include voice-

dialing, automatic banking, and credit card number

entry. Many speech recognizers acheive high perfor-

mance by modeling digits as HMMs with large num-

bers of multivariate Gaussian mixtures to accommo-

date the variability of di�erent speakers and channel

conditions. In this paper, we implement a recognition

system that models each digit as multiple HMM seg-

ments which depend on context in order to capture

acoustic phenomena associated with coarticulation be-

tween digits. The HMM acousticmodels are single mix-

ture 16 feature Gaussian distributions with an assumed

identity covariance matrix. We constrain the use of the

multiple HMM segments for each digit by a grammar

in order to enforce consistency of model usage based

on the intended modeling of coarticulation. We �nd

that a combination of inter-digit modeling, discrimi-

nant training, and per-utterance adaptation can each

contribute about 30% reduction in error rate. Using

this approach, we can realize a system with relatively

low memory and metric computation requirements.

The second section of this paper introduces the mo-

tivation for and construction of inter-digit HMM mod-

els. The third section describes corpora used for train-

ing and testing. The fourth section presents the results

of experiments performed using the inter-digit models.

In the conclusion we address related areas for future

research.

2. INTER-DIGIT CONTEXT MODELING

Coarticulation betweenwords is a commonphenomenon

in continuous speech. One expects that the pronunci-

ation characteristics associated with the end of a digit

inuences the pronunciation of beginning of the next

digit, and vice-versa. This leads to a large number of

possible acoustic signals between digits. When we ex-

amined digit likelihood scores and feature variances, we

observed signi�cantly larger scores and variances at the

beginning and ending of word HMM models than dur-

ing the middle portion of the digit. Figure 1 shows a

typical example of the nominal expected scores for the

digit \three". The horizontal axis is the distribution

number that would be encountered along the nominal

path through the HMM.

These observations suggest that inter-digit context

is important for modeling of continuously spoken digits.

To model the inter-digit context we implemented the

simple strategy of dividing each digit model into three

equal-length HMM contexts: left, center, and right.

The left and right models are a�ected by inter-word

context, and thus require separate acoustics (and hence

HMMs) for di�erent contexts. We modeled the center

HMM as consistent over all left and and right contexts.

Other papers [3] have reported improvements by us-

ing similar partitions. This is by no means the best

partition. We believe the partition should be based on

variance analysis. Nevertheless, the partition should be
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Figure 1: Expected Score for Three

indicative of improvements that may be achieved. We

also assume the context e�ects will depend only on the

immediate neighboring phone. For example, zero and

oh both end with phone /ow/, therefore, their e�ect on

the following digit should be the same. Constructing

models with these assumptions results in 418 models

with a total of 2612 acoustic distributions, about six

times that of using whole word models. An example

of the labeling of the three HMM model segments used

to recognize the digit \two" in the various contexts is

outlined as follows (bbb indicates a word boundary):

Left Context Center Context Right Context

bbb_twoL_twoC twoC twoC_twoR_bbb

ow_twoL_twoC twoC_twoR_zeroL

n_twoL_twoC twoC_twoR_ohL

twoR_twoL_twoC twoC_twoR_oneL

iy_twoL_twoC twoC_twoR_twoL

fourR_twoL_twoC twoC_twoR_threeL

fiveR_twoL_twoC twoC_twoR_f

sixR_twoL_twoC twoC_twoR_s

twoC_twoR_eightL

twoC_twoR_nineL

All HMM models used in this paper are �nite dura-

tion (no state self-loops), but states can share the same

acoustic distribution. We have observed consistently

better performance for �nite duration than in�nite du-

ration HMMmodels for the telephone digit recognition

task. The number of states in each model is propor-

tional to the average duration of each digit. We allow

up to three states to share the same acoustic distri-

bution and hence a maximum of three input frames

can be explained by a single distribution. We also al-

low a skip of states to bypass a given distribution to

accommodate di�erent speaking rates. The multivari-

ate Gaussian acoustic distribution model for each state

consists of only a 16 element mean feature vector; all

state covariances are assumed to be identity. We also

construct separate male and female HMM models.

3. CORPORA

In this paper, we use the publicly available Macrophone

corpus [1] for all training of HMM models. This cor-

pus contains a total of 204,160 utterances from 5005

telephone calls. Each call provides between 1 and 44

utterances. The calls are partitioned into sets for train-

ing, development testing, and evaluation testing. The

training set contains 4005 calls, the development test

set contains 500 calls, and the evaluation test data are

split into �ve sets of 100 calls per set. We use the train-

ing set to train the HMM models and the development

testing set as one of the three corpora used for test-

ing. We did not use the evaluation test set. Of the

44 utterances in each call, three utterances (utterances

10, 13, and 31) are digit strings (with possible dash

and area code embedded). We used male and female

utterances, but excluded utterances from children. We

also excluded utterances containing out of vocabulary

words, but retained utterances containing noise such as

[mouth noise] and [uh].

The syntax for Macrophone digits utterances is:

dddd dddd dddd

dddd dash dddd dash dddd

ddd ddd dddd

area code ddd ddd dddd

ddddd dd

ddddd dash dd

where 'd' stands for one digit.

The selection process mentioned above yields 4053

male training utterances and 5543 female training ut-

terances, totaling 9596 training utterances. The same

selection criteria results in 1207 test utterances from

the development testing set with the same syntax as

the training set.

In order to validate performance over multiple col-

lection environments, we use two other corpora for ad-

ditional testing. One testing corpus consists of 1390

ten-digit utterances from the Voice Across America

long-distance telephone corpus collected by Texas In-

struments [2]. The second corpus consists of 1676 ten-

digit utterances recorded from a challenging noisy �eld

recognition test conducted by Texas Instruments.

In this paper, we constrain the number of digits

recognized per utterance by using a length-constrained

grammar. Additional HMMs are included to model

silence, breath sounds, and other noise phenomena.



4. EXPERIMENAL RESULTS

4.1. Baseline Performance

To establish a baseline comparison we use HMM word

models. The resulting 22 digit HMMs utilize a total

of 438 acoustic distributions. Performance is given in

Table 1 below, which shows word correct, word substi-

tution, word deletion, word insertion, word error and

sentence error in percent.

Table 1. Baseline HMM Word Models

Corpus Corr Sub Del Ins Err S. Err

Mac 97.5 2.0 0.5 0.4 2.9 17.0

VAA 95.0 3.6 1.4 0.3 5.3 26.5

Fld 91.8 4.7 3.5 0.5 8.8 35.4

4.2. Inter-digit models

We then used the 418 inter-digit models trained over

the Macrophone corpus to recognize the same utter-

ances as the baseline test. Recognition using the 418

inter-digit models provides notable improvement over

the baseline word HMMs as indicated in Table 2.

Table 2. Inter-Digit Models

Corpus Corr Sub Del Ins Err S. Err

Mac 98.4 1.4 0.3 0.5 2.1 11.2

VAA 97.3 2.4 0.3 0.2 2.9 18.1

Fld 94.4 3.4 2.2 0.3 5.9 26.1

5. PER-UTTERANCE ADAPTATION

Speaker and environment adaptation can improve recog-

nition performance signi�cantly. Common improve-

ments utilize methods of adapation such as types of

cepstral normalization or HMM parameter adaptation

[6] [7].

Using the inter-digit models, we tried two simple

types of adaptation based only on the utterance to

be recognized. One method used simple normalization

by subtraction of the utterance log spectral parame-

ter mean from each input utterance frame parameter

vector.

The secondmethod adapted themean vectors of the

HMM models using a single a�ne transformation, r̂ =

Ar + b. We also investigated simplifying assumptions

of A = I or A diagonal. To calculate the a�ne trans-

formation, we constructed two alignments of the test

utterance. The �rst alignment was based on the orig-

inal models. The a�ne transformation was computed

to minimize the distance between the Viterbi aligned

test utterance and correspondingmodel acoustic distri-

butions. The second alignment was based on the a�ne

transformed models. The transformation should adapt

all models to represent the input utterance better. This

is basically an unsupervised adaptation based on the

same test utterance. Because silence usually accounts

for a large portion in the utterance, in computing the

transformation, we did not give each input frame equal

weight. Instead, we gave each model frame (those that

occur in the alignment) equal weight. Because silence

is only one frame of model, the silence portion will not

inordinately inuence the transformation. That is, the

transformation is based mostly on speech portion of the

test utterance.

Results using both types of adaptation gave im-

provements in performance. Recognition results using

log spectral mean subtraction are shown in Table 3.

Tables 4 and 5 show results using a�ne adapatation

with just a bias term and with a diagonal assumption

for the matrix A. The results in Tables 4 and 5 show

that word error was signi�cantly higher for the a�ne

adaptation method. This is due to a large deletion er-

ror caused by non-alignment resulting from the beam-

limited Viterbi search. When the recognizer does not

align an utterance, then all words of the utterance are

reported as deletions.

Table 3. Mean Subtraction

Corpus Corr Sub Del Ins Err S. Err

Mac 99.0 0.8 0.2 0.4 1.4 7.5

VAA 98.4 1.5 0.1 0.1 1.6 12.0

Fld 97.6 2.2 0.2 0.2 2.6 17.6

Table 4. A�ne with A=I

Corpus Corr Sub Del Ins Err S. Err

Mac 98.9 0.9 0.2 0.3 1.4 8.1

VAA 98.2 1.5 0.3 0.1 1.9 12.9

Fld 95.7 2.2 2.1 0.2 4.6 19.9

Table 5. A�ne with A Diagonal

Corpus Corr Sub Del Ins Err S. Err

Mac 99.0 0.9 0.1 0.3 1.3 7.9

VAA 98.5 1.3 0.3 0.1 1.7 12.9

Fld 96.0 1.9 2.1 0.3 4.3 18.7

We have also tried using two a�ne transformations:

one for higher energy speech input frames, and another

for low energy and silence input frames. We note that

there is a natural bi-modal distribution of frame ener-

gies. The classi�cation was done by a simple energy

threshold. However, the two transformations did not

provide better performance than a single a�ne trans-

formation.



5.1. Discriminant Training

We used Viterbi training to obtain the above results.

For a small vocabulary application, such as digit recog-

nition, discriminant training has shown signi�cant im-

provement [5] [4]. To include this type of discrimi-

nant processing with the inter-digit models, we used a

simple gradient algorithm to adjust the feature mean

vectors. We performed two recognition passes on the

digit training corpus: one supervised, the other unsu-

pervised. Confusion pairs were identi�ed whenever the

two alignments disagreed, and a gradient method was

applied to adjust the mean vectors. Including this gra-

dient type of adaptation yielded further improvements.

Table 6 shows the results of combining inter-digit mod-

els, mean subtraction and gradient training. Table 7

gives the results for a�ne adaptation with diagonal A

and gradient training.

Table 6. Mean Subtraction and Gradient

Corpus Corr Sub Del Ins Err S. Err

Mac 99.3 0.6 0.1 0.3 1.0 6.5

VAA 98.9 1.0 0.1 0.1 1.2 9.4

Fld 98.0 1.7 0.3 0.3 2.3 15.2

Table 7. A�ne with Diagonal A and Gradient

Corpus Corr Sub Del Ins Err S. Err

Mac 99.2 0.6 0.2 0.2 1.0 5.7

VAA 98.5 1.0 0.5 0.1 1.6 10.0

Fld 96.1 1.5 2.4 0.2 4.1 15.8

6. CONCLUSIONS

The results presented in this paper demonstrate that

inter-digit modeling can provide improved digit recog-

nition performance by modeling the coarticulation that

occurs between digits. Results presented indicate that

this improvement is in addition to improvements ob-

tained by utterance adaptation and discriminative train-

ing. On the Macrophone corpus each of the methods

provides about 30% improvement in performance.

We noticed during training that word boundary left

and right context models were preferred over other left

and right context models, leading to an imbalance in

training between word boundary context and other con-

text models. We are investigating this phenomenon

and designing means of balancing the training.

Obviously, a single mixture acoustic distribution for

each state consisting of only a mean vector can not

model all of the variability of a state. For example,

single mixtures cannot model dialect variations within

the digits. We are presently conducting experiments

with multiple-mixture inter-digit models. We also plan

to determine if we can add mixtures on an as needed

basis, to keep the number of acoustic distributions at

a minimum.
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