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ABSTRACT

Context-dependent acoustic models have been applied in
speech recognition research for many years, and have been
shown to increase the recognition accuracy signi�cantly.
The most common approach is to use triphones. Recently,
several speech recognition groups have started investigat-
ing the use of larger phonetic context windows when build-
ing acoustic models. In this paper we discuss some of the
computational problems arising from wide context modeling
(polyphonic modeling) and present methods to cope with
these problems. A two stage decision tree based polyphonic
clustering approach is described which implements a more
exible parameter tying scheme. The new clustering ap-
proach gave us signi�cant improvement across all tasks -
WSJ, SWB, and Spontaneous Scheduling Task - and across
all languages involved (German, Spanish, English). We re-
port recognition results based on the JANUS speech recog-
nition toolkit [2, 8] on two tasks comparing acoustic context
phenomena in English read versus spontaneous speech. We
used our WSJ 60K recognizer and the JANUS SWB 10K
polyphonic recognizer.

1. INTRODUCTION

The phonetic context F OW N Z of a given phone OW
a�ects the acoustic realization of that phone. Therefore,
using acoustic models which make e�ective use of the in-
formation about the preceding phone (F) and the following
phone (N) leads to a signi�cant improvement in terms of
speech recognition performance [6]. But this approach ig-
nores the strong inuence that may be exerted by phones
that are further away than the immediately preceding and
following one. There has been some research towards using
wider contexts by allowing questions in the decision tree
clustering approach to refer to phonetic contexts two or
more phones to the left or right of the phone to be modeled
(polyphonic models) [1, 5].

In this paper we examine the e�ect of the width of the
context on the speech recognition process in the JANUS
recognition toolkit [2, 8], especially on computational e�ort
to train and cluster the models and on the resulting error
rate. We will see that the error rate can be reduced sig-
ni�cantly by increasing the context width. Our main focus
will be on comparing the e�ect of modeling the phonetic

context variation in read versus spontaneous speech by re-
ferring to the the Wall Street Journal task as benchmark
task for English read speech and Switchboard as the spon-
taneous speech benchmark.
Di�erent methods of clustering have been proposed [6, 4,

7]. The greater the number of models to be clustered, the
more infeasible it will become to do agglomerative cluster-
ing. Divisive clustering methods are usually implemented as
decision trees, using a prede�ned set of questions for mak-
ing decisions. In JANUS, we use maximum entropy gain on
the mixture weight distributions as the selection measure
for dividing a cluster into two subclusters. We have exam-
ined the selection of the top-gaining questions during the
clustering process and will report the results below.

2. DICTIONARY AND POLYPHONES

In order to explain the number of polyphones observed in
the training data of WSJ as well as SWB we have to realize
that there are some major di�erences in size and structure
of the transcriptions of the two databases: the WSJ training
data consist of 700k words whereas SWB has about twice
as many words in the transcription of the acoustic training
data. The following �gure shows that the frequencies of
di�erent word lengths in phones di�ers very much between
Wall Street Journal and Switchboard.
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Figure 1. Dictionary word length distribution

While for WSJ the most frequent number of phonemes
in the dictionary is 6 phonemes, the most frequent word
length in the training data is 2 phonemes. Under these
circumstances, triphone modeling gives us word-dependent



models for approximately 50% of the words in the training
data. Quintphones cover 80%, and septphones around 90%.
Given these �gures we expect the bene�t from using wide
contexts to decrease with the size of the context.

In JANUS, the maximum usable context width is all
phones within a word and up to one phoneme into the neigh-
boring word, limited by the current implementation of the
decoder. In order to cluster wide context acoustic models in
an e�cient way, we have to cope with the problem of han-
dling a prohibitively large number of initial acoustic models
to start with. Figure 2 shows the number of di�erent mod-
els we get when using di�erent context sizes. The one order
of magnitude larger numbers for the SWB task are partially
due to the greater size of the task in terms of the number of
words in the transcription. But another important aspect
is much greater diversity expressed in the perplexity of the
task as well as the mean number of pronunciation variants
per word.
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Figure 2. Number of polyphones observed for dif-

ferent context sizes

Many of these polyphones are seen very rarely during
training. Figure 3 shows how many polyphonic models are
seen a given number of times. We can see that the wider
the context, the greater is the part of the polyphones that
are seen less often, while the number of very frequent poly-
phones decreases.
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Figure 3. Frequency of polyphone counts

3. THE CLUSTERING ALGORITHM

The polyphonic clustering algorithm �rst collects all poly-
phones that occur in the training data. Hereby, the con-
straints imposed by the decoder which allow cross-word
context to contain one phoneme from the neighboring word
only are satis�ed. Each polyphone is acoustically modeled
with three states (subpolyphones), each one modeled as a
distribution, i.e. as mixture weights over a codebook.

3.1. Polyphonic Trees

Due to the extremely large number of models we have to
handle within the clustering procedures, we had to come
up with e�cient data structures to organize the polyphones
and their associated distributions. One e�cient way to rep-
resent a set of polyphones are so called polyphonic trees:
The root of the tree is the center/mid phone. For each ob-
served immediate context �1 there is a child to the root
node with the names of the left and the right phone, the
count of how often the respective \triphone" was observed,
and a pointer to the acoustic model (distribution). Each
\triphone" child has a set of children one for each \quint-
phone" context found around the triphone parent in the
training data.

3.2. Initialization

The starting point for the clustering procedure is a decision
tree as shown in �gure 4 (left). It has one leaf for each
phone in the set of phones. Attached to each leaf there is
a polyphonic tree containing all the observed polyphones
that fall into that leaf. All Polyphones within a polyphonic
tree share a single codebook.

3.3. Splitting Criterion

We then develop a decision tree as described in [4, 7], allow-
ing questions about arbitrary contexts. These questions are
based on 80 di�erent subsets (e.g. vowels, syllabics, voiced
phones...) of our set of phones. For each of these subsets
a question is de�ned with respect to all possible contexts
(in this case -2,-1,1,2) and for each question an extended
question is added which also asks whether the considered
context is tagged as being a word boundary.
The distance metric de�ning the gain received by splitting

a tree node is measured as the loss of entropy as described
in [6].
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where m are the counts for model m, �mi counts for com-
ponent i of model m.
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Figure 4. Splitting a decision tree node and its asso-

ciated polyphonic tree based on a phonetic question

3.4. Training Schedule and Codebook Tying

In our standard training scheme we �rst grow a decision
tree until it reaches the number of desired leaf nodes (typi-
cally a few thousand, depending on the size of the available
training data; grey nodes in Figure 1). We constraint splits
to be only valid as long as both child nodes created still
have su�cient training data to train the underlying code-
book. Then, a fully continuous Gaussian mixture model is
trained for every leaf node. In a second clustering phase,
we continue growing the decision tree and eventually train
a separate distribution of mixture weights for each of the
resulting leafs. This is a new way of optimizing the degree
of mixture tying in a large vocabulary hidden markov model
based speech recognition system.

b) Distribution Clustering

a) Codebook Clustering

Table 1. Two stage clustering of acoustic models

(the distributions in the same dashed area are de-

�ned on the same codebook)

Hidden markov models with continuous densities provide
a detailed stochastic representation of the acoustic space
at the expense of increased computational complexity and
lack of robustness. This two level clustering approach ad-
dresses the problem of the lack of robustness by having a

set of distributions share the same codebook. In particular,
the algorithm proposed helps to automatically determine
the number of sets of HMM states which share the same
codebook and based on that subsets of HMM states which
share the same distribution.

4. SELECTION OF QUESTIONS

In our experiments we proved our expectation that ques-
tions about far contexts generally get a smaller gain
than questions about the close context. So close-context-
questions get more frequently used in the decision trees.
Wide-context questions become more likely if we look at
the deeper levels of the tree. Figure 5 displays the frequen-
cies of the context width in the decision tree questions at
di�erent phases of the decision tree growing algorithm. We
can clearly see that the part of questions about the wide
context 2 in the WSJ task is larger than in the SWB task,
which is due to the smaller diversity and greater structural
organization of the task
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Figure 5. Frequency of questions referring to tri-

phonic vs. quintphonic context

Another interesting observation is the very large number
of questions which ask for the word boundary tag, which
means that there is a strong focus onto crossword triphones
when clustering (see �gure 6).
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Figure 7 displays the observed average entropy gain at
di�erent stages of the decision tree development:
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Figure 7. Entropy gain

We have analysed which questions (out of 281 used) are
getting the best entropy gains. In both tasks similar ques-
tions are among the best scoring questions:

WSJ gain SWB gain
Question rank sum rank sum

+1=SILENCES 1 69108 1 2629568

-1=SILENCES 2 59130 3 2249279

-1=VOICED 10 39089 4 1121313

+1=HIGH VOWEL 5 49847 9 764036

5. EXPERIMENTS

We have conducted recognition experiments with the
JANUS recognizer [2, 8] on three tasks: the Wall Street
Journal task (WSJ) the Switchboard LVCSR task, and the
German spontaneous scheduling task. The two English
tasks use the same phoneme set and the same set of ques-
tions, to make them better comparable. All recognizers use
approximately the same number of parameters. We have
observed a relative error reduction of 5% on the WSJ task,
by increasing the context width from 1 to 3. The increase
of the context width from 1 to 2 reduced the error on the
SWB task by 8%. A similar improvement was achieved on
the German, Spanish and English Spontaneous Scheduling
tasks. Our currently best performance on the WSJ task
(evaluation set Nov. 1994) is at 9.0% errors. The SWB
recognizer was top ranking in DARPA's spring 96 LVCSR
evaluation [3, 9] and currently has an error rate of 36%.

Task Context �1 Context �2 Context �3

WSJ 20.9% WE 20.2% WE 19.9% WE
SWB 46.0% WE 43.6% WE

Table 2. Results on di�erent context width.

6. CONCLUSION

In our experiments so far we have shown that wide context
acoustic modeling can reduce the error rates signi�cantly.
We presented a new clustering approach which combines
clustering and tying in one procedure. The bene�t from
using wide context is greater for spontaneous speech than
for read speech due to the more prominent coarticulation
e�ects when speeking in a spontaneous way.

In the future we intend to examine di�erent distance mea-
sures for splitting a decision tree node, and we will work on
methods that help to �nd the optimal context widths and
optimal numbers of acoustic models automatically.
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