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Figure 1. First two cepstrum coe�cients of three

di�erent realizations of the phrase /all year/ in

TIMIT
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Figure 2. Interpolation between target vectors by

smoothing spline. The circles represent the esti-

mated target vectors.



4. MAIN RESULTS

The TIMIT database is chosen for the evaluation experi-
ments. As a �rst step, we only performed phoneme classi�-
cation experiments in comparison with some other models.
The training subset consists of 100 speakers and the test-

ing subset consists of 40 speakers. The results of the exper-
iments are phonetic classi�cation of the 61 TIMIT quasi-
phonemic labels folded into 39 classes. Seven Mel-frequency
cepstral coe�cients (MFCC) and their di�erences are used
as speech feature vectors.
The proposed method is compared with both context in-

dependent models and context dependent models described
as follows:

CI-N3M5 Context independent phoneme models with 3
HMM states for each phoneme and 5 Gaussian mixture
components per state.
(Total number of Gaussian kernels: 61x3x5= 915.)

CI-N3M100 Context independent phoneme models with
3 HMM states per phoneme and 100 Gaussian mixture
components per state. The reason for including this
model is to compare with the next context dependent
model with similar number of parameters.
(Total number of Gaussian kernels: 61x3x100= 18300.)

CD-N3M5 The context dependent units are chosen to be
the generalized triphones as described in [11].
(Total number of Gaussian kernels:
39x(15+15+1)x3x5= 18135.)

DDI Date driven interpolation models with one state per
phoneme and 15 mixture components per state model.
(Total number of Gaussian kernels: 61x15= 915.)

Model Type Accuracy Rate

CI-N3M5 62.8%
CI-N3M100 64.6%
CD-N3M5 73.4%
DDI (Proposed method) 72.5%

Table 1. TIMIT phoneme classi�cation experiment

From this experiment, it is quite clear that context de-
pendent models outperform context independent models by
a signi�cant amount. By merely increasing the model com-
plexity in a context independent model does not help too
much. Interestingly, with the proposed method, we are
able to achieve the same performance as the generalized
triphones with much smaller number of model parameters.

5. DISCUSSIONS

In this study, we have proposed a new method of modeling
speech co-articulation without the use of context depen-
dent speech units. This approach has a few advantages:
First, the distributions of the target phonemic units are
much tighter than those estimated from the hidden Markov
models with all the frames included for parameter estima-
tion. Second, the memory requirement for this new model
is much less demanding comparing with the models involv-
ing context-dependent speech units. Third, the recognition

step does not require dynamic programming based search
procedure, and it can run for any given length of a partial
utterance. Therefore it can be very suitable for real-time
speech recognition tasks.
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units of the utterance x(t), and let (y(s1); � � � ; y(sk)) be the
sequence of the target feature vectors corresponding to the
phonemic units (s1; � � � ; sk).
As in context-independent phonemic models, y(j) can

either be modeled by a Gaussian distribution

y(j) � N(�(j);�(j))

or a mixture of Gaussian distributions

p(y(j)j�(j);�(j)) =

MX
m=1

c(m)pN(y(j)j�(j;m);�(j;m))

where pN (�) is the density function of a single Gaussian
distribution.
We model the sequence of speech signal x(t) by a smooth

interpolating function plus a random noise part as follows:

x(t) = f(t;y(s1); � � � ;y(sk); t(s1); � � � ; t(sk)) + �(t); (1)

where (t(s1); � � � ; t(sk)) is the sequence of knots for interpo-
lation. The crucial component in this model is the interpo-
lation between the target vectors (y(s1); � � � ;y(sk)), which
can be modeled in many di�erent ways. Amongth them,
smoothing spline models interpolation is very desirable to
use for two reasons: 1) the smoothness of the trajectories
connecting various target units is automatically guaranteed;
2) the interpolation has explicit solution, which leads to
very e�cient computation [9, 12]. The general form of the
cubic spline model is

f(tj[ti�1; ti]) =
1

6hj

h
Ai�1(ti � t)3 + Ai(t� ti�1)

3

+ (6yi�1 �Ai�1h
2
i )(ti � t)

+ (6yi �Aih
2
i )(t� ti�1)

i
(2)

where Ai's are the second order derivatives and hi's are the
spacings between ti's.
For simplicity, the spline model can also be replaced by

a linear interpolating function:

f(tj[ti�1; ti]) = �yi�1 + (1� �)yi

where 0 � � � 1.

3. ALGORITHM FOR PARAMETER

ESTIMATION

The intrinsic model parameters to be estimated are �(j)
and �(j) for j = 1; � � � ; J , where j represents j-th phone-
mic unit, and J is the total number of such units in a
given speech recognition task. For each given utterance
x(t), we also need to estimate the auxiliary parameters
(y(s1); � � � ;y(sk); t1; � � � ; tk). The problem of estimating the
model parameters can be solved by maximizing the follow-
ing objective function:

L(xjy; �;�)

=

kX
j=1

log(p(y(sj)j�(sj);�(sj)))

�

TX
t=1

jjx(t)� f(t;y(s1); � � � ;y(sk); t(s1); � � � ; t(sk)jj
2

= A(y; �;�)�B(x;y) (3)

where the second term only involves the auxiliary parame-
ters (y(s1); � � � ;y(sk); t(s1); � � � ; t(sk)).

3.1. Training

For a given set of n utterances xi(t), i = 1; � � � ; n with
known phonemic transcriptions (si1; � � � ; s

i
k(i)) for each i, the

objective function becomes

L(x1; � � � ;xnjy1; � � � ;yn; �;�) =
nX
i=1

�
A(yi; �;�)� B(xi;yi)

�
: (4)

The maximization of this objective function can be achieved
by the following alternating iterative procedure:

1. Obtain initial estimates (�;�) from the standard
phonemic hidden Markov models.

2. For given (�;�), estimate the optimal knot sequence
(ti1; � � � ; t

i
k(i)) for (s

i
1; � � � ; s

i
k(i)) and the corresponding

target vectors (yi(si1); � � � ;y
i(sik(i))) separately for each

xi(t).

The estimation is achieved by an iterative procedure,
where in each step, only one knot is optimized for
B(xi;yi) with all other knots �xed. Good initial
knots can be obtained from the middle points of each
phoneme segment or, even better, the change points in
the feature space.

3. For �xed (yi(si1); � � � ;y
i(sik(i))), the estimation of �(j)

and �(j) does not involve the second term B(xi;yi)
in (4). �(j) and �(j) can be estimated by maximizing
the j-th component of the log-likelihood function inPn

i=1
A(yi; �;�).

Figure 2 shows the estimated target vectors as well as the
interpolation between the target points for the examples in
Figure 1.

3.2. Recognition

For a given utterance x(t); t = 1; � � � ; T , we want to estimate
the phonetic transcription (s1; � � � ; sk) as well as the number
of phonemic units k. The steps of decoding the phonetic
sequence are as follows:

1. Set initial value of k = 1.

2. Find a sequence of knots (t1; � � � ; tk) with their cor-
responding target vectors (y(t1); � � � ;y(tk)) such thatPT

t=1
jjx(t)� f(t;y(t1); � � � ;y(tk); (t1; � � � ; tk)jj

2 is min-
imized. This is essentially the same as step 2 for train-
ing.

3. For each y(ti), �nd

si = argmax J
j=1p(y(ti)j�(j);�(j)):

4. Set k  k + 1, and repeat the procedure until the
phonetic sequence s = (s1; � � � ; sk) remains the same
(assuming that consecutive duplicated symbols in s are
removed).
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ABSTRACT

Parsimonious modeling of the context dependency na-
ture of speech due to co-articulation is very important
for improving the performance of speech recognition sys-
tems. Numerous approaches have been proposed in the
literature to address this problem. However, most of the
methods are based on the idea of using context-dependent
speech units, which inevitably increases the complexity of
the model space. This paper presents a new approach of
speech co-articulation modeling with complexity only com-
parable to context-independent models. In this model, the
movement of a sequence of speech signals is characterized
by a set of anchor points in the feature vector space that
are corresponding to the target phonemic units. The transi-
tions between the phonemic units due to co-articulation are
modeled as interpolations between the target vectors. Two
types of parameters are involved in the models: the intrinsic
parameters in the models of target units and the auxiliary
parameters specifying the transitional units. The auxiliary
parameters are estimated \online" for a given sequence of
speech feature vectors, hence it does not contribute to the
complexity of the models. Unlike \triphone"-type context
dependent models, the complexity of this approach is com-
parable to the context independent phoneme models, yet,
some phonetic classi�cation experiments showed that the
new model can achieve the same performance as the more
complex context dependent models.

1. INTRODUCTION

The context dependency nature of continuous speech due
to co-articulation is a major problem for phoneme-based
speech recognition. Although, the techniques of tri-
phone/generalized triphone modeling ([10], [8], etc.) have
been commonly used to deal with this problem, they often
result a large number of models, which inevitably become
di�cult to train for limited amount of speech training data.
Working towards parsimonious modeling of context depen-
dency in continuous speech becomes extremely important
for robust recognition. In [4], we have proposed a phono-
logical feature based approach to reduce model space with
parameter sharing among the states with similar articula-
tory features. Although the number of states is greatly
reduced from the total number of all triphones, it is still
much larger than the number of speech units in a context
independent model.

In this paper, we propose a method of modeling the con-
text dependency nature of speech without introducing more
parameters than those in the context independent phone-
mic models. In this model, the movement of a sequence
of speech signals is characterized by a set of anchor points
in the feature vector space that are corresponding to the
target phonemic units. The transitions between phonemic
units due to co-articulation are modeled as interpolations
between the target vectors. Two types of parameters are
involved in the models: the intrinsic parameters in the mod-
els of target units and the auxiliary parameters specifying
the transitional units. The auxiliary parameters are esti-
mated \online" for a given sequence of speech feature vec-
tors, hence it does not contribute to the complexity of the
models. Unlike \triphone"-type context dependent mod-
els, the complexity of this approach is comparable to the
context independent phoneme models.

This method shares the same idea of modeling dynamics
movements of speech signal with many other methods devel-
oped in the recent years ([1], [5], [2], [7], [6], etc.). However,
because the interpolation is not performed at the model lev-
els, this approach does not increase model complexity for
modeling the dynamics in speech.

2. MODEL FORMULATION

The basic idea underlying this model is to characterize a
sequence of feature vectors as interpolations among a set
of target units (or anchor points). The transitional portion
of the speech is then modeled by smoothing spline based
trajectories derived from the neighboring target units.

This model is motivated from the observation that al-
though speech signal is highly dynamic, its movement tends
to follow certain paths from one target to another corre-
sponding to the underlying phonemic units. Figure 1 shows
an example of three such paths for the phrase /all year/ in
TIMIT. The paths are quite di�erent from each other, how-
ever, the target positions at the upper-left and lower-right
corners are rather consistent. This suggests that it is more
important to model the target positions precisely than the
paths of the intermediate positions that are merely results
of the co-articulation phenomena.

Let x(t); t = 1; � � � ; T be a sequence of speech feature
vectors calculated from a window of acoustic signals at time
t, such as linear predictive coe�cients, cepstrum coe�cients
etc. We usually take x(t) as a complete utterance. Let
(s1; � � � ; sk) be the underlying sequence of target phonemic


