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ABSTRACT

This paper presents two look-ahead techniques for speeding
up large vocabulary continuous speech recognition. These
two techniques, which are referred to as language model
look-ahead and phoneme look-ahead, are incorporated into
the pruning process of the time-synchronous one-pass beam
search algorithm. The search algorithm is based on a
tree-organized pronunciation lexicon in connection with a
bigram language model. Both look-ahead techniques have
been tested on the 20 000-word NAB'94 task (ARPA North
American Business Corpus). The recognition experiments
show that the combination of bigram language model
look-ahead and phoneme look-ahead reduces the size of
search space by a factor of about 30 without a�ecting
the word recognition accuracy in comparison with no
look-ahead pruning technique.

1. INTRODUCTION

In this paper, we present the combination of language
model look-ahead and phoneme look-ahead pruning for
large vocabulary continuous speech recognition. The basic
idea of the language model look-ahead is to fully incorporate
the language model (LM), e.g. a bigram or trigram
language model, as early as possible into the pruning
process of the time-synchronous search algorithm using
word dependent copies of the lexical tree (to be more exact:
lexical pre�x tree). To use the look-ahead for a bigram
language model, we factor the bigram probabilities over
the nodes of the lexical tree for each copy of the lexical
tree [1, 2, 6, 7, 8]. To do this in an e�cient way, we
introduce special implementation details [6]. In addition to
the LM look-ahead, we present a phoneme look-ahead which
is similar to the method described in [4]. The idea of this
look-ahead technique is to estimate the likelihood of each
phoneme ahead of the current time frame. This probability
estimate is then used in an additional pruning step. To
reduce the computational cost of the phoneme look-ahead,
we describe suitable simpli�cations of the phoneme models.

The organization of this paper is as follows. In Section
2, we review the one-pass beam search using a tree-
organized pronunciation lexicon in combination with a
bigram language model. In Section 3, we present the
language model look-ahead. In Section 4, we present the
phoneme look-ahead. In Section 5, we give experimental
results on the NAB'94 20000-word development data.

2. BASELINE SEARCH METHOD

In this section, we brie
y review the widely used time-
synchronous one-pass dynamic programming search method
in connection with a tree-organized pronunciation lexicon
and a bigram language model [4, 5]. To formulate the
dynamic programming approach, we introduce the following
quantity [5]:

Qv(t; s) := overall score of the best path up to time t
that ends in state s of the lexical tree for predecessor
word v.

The dynamic programming recursion for Qv(t; s) in the
word interior is:

Qv(t; s) = max
�

f q(xt; sj�) �Qv(t� 1; �) g ;

where q(xt; sj�) is the product of transition and emission
probabilities of the underlying 6-state Hidden Markov
Model. At the word level, we have to �nd the best
predecessor word for each word hypothesis. For this
purpose, we de�ne:

H(w; t) := max
v

f p(wjv) �Qv(t; Sw) g ;

where Sw denotes a terminal state of the lexical tree for
word w. To start up new words, we have to initialize
Qv(t; s) as:

Qv(t� 1; 0) = H(v; t� 1) ;

where the �ctitious state s = 0 is used to initialize a tree.
The standard pruning approach consists of three steps,

e.g. standard beam pruning or so-called acoustic pruning,
language model pruning and histogram pruning, that are
performed every 10-ms time frame as described in [8].
The e�ciency of this standard pruning approach can be
improved by using the so-called look-ahead techniques,
which are presented in the following.

3. LANGUAGE MODEL LOOK-AHEAD

The basic idea of the language model look-ahead is to
incorporate the language model probabilities as early as
possible into the search process and thus into the associated
pruning process. This is achieved by factoring the language
model probabilities over the nodes of the lexical tree. For a



bigram language model, the factored LM probability �v(s)
for state s and predecessor word v is de�ned as:

�v(s) := max
w2W(s)

p(wjv) ;

whereW(s) is the set of words that can be reached from tree
state s. The term p(wjv) denotes the conditional bigram
probabilities. After the LM look-ahead tree factorization,
i.e. computing �v(s), each node (or phoneme arc) of
a lexical tree copy is assigned to the maximum bigram
probability over all words that are reachable via this speci�c
node from predecessor word v.
We incorporate the factored LM probabilities �v(s)

into the dynamic programming recursion across phoneme
boundaries:

Qv(t; s) =
�v(s)

�v(~s)
� max

�
f q(xt; sj�) �Qv(t� 1; �) g ;

where ~s is the parent node of s. For state transitions not
involving phoneme boundaries, we have to use the same
equation as described in Section 2. To compute the start-up
score H(w; t), we have to take into account that, at the end
nodes of the lexical trees, the language model probabilities
have already been included. Hence we have simply:

H(w; t) := max
v

f Qv(t; Sw) g :

To reduce the memory and computational cost, this
approach of on-demand calculation is further re�ned by
additional steps [6]: The memory cost for storing the
LM look-ahead probabilities depends on the number of
nodes of the original pronunciation tree. This tree can be
compressed because there are many tree nodes that have
only one successor node.
Instead of calculating the LM factored probabilities

for all possible tree copies beforehand, we calculate the
LM factored probabilities on demand for each new tree
copy depending on predecessor word v and store these
factored probabilities in a look-up table. A dynamic
programming procedure allows us to compute the LM
factored probabilities in an e�cient way. We initialize
the leaves of the LM look-ahead tree with the bigram
language model probabilities p(wjv). Then the LM factored
probabilities are propagated backwards from the tree leaves
to the tree root by using a dynamic programming recursion,
which, for each tree node, determines the successor node
with maximum look-ahead probability.

4. PHONEME LOOK-AHEAD

The phoneme look-ahead is based on the following concept
[4]. Each time a hypothesis is formed about a new phoneme
arc to be started in the search process, it is �rst checked
whether this new phoneme arc hypothesis is likely to survive
the pruning steps that will be performed for the next future
time frames. To this purpose, we compute an approximate
probability estimate for each possible phoneme arc that can
be activated at a given time frame in the beam search.
This approximate probability estimate, which is referred
to as look-ahead score, is then combined with the detailed
score of its predecessor phoneme and used in an additional
pruning step, in which all hypotheses of phoneme arcs to be

started up are considered time-synchronously in the usual
spirit of beam search.
To formulate the phoneme look-ahead and the associated

pruning operation in detail, we use the following notation:

�: one of the phoneme arcs to be started in the lexical
tree. Note that the same phoneme arc � may occur in
di�erent copies of the lexical tree.

~�: the unique parent arc of � in the lexical tree, for
which one of the �nal states has been reached in the
search process. Note that this mapping �! ~� captures
the lexical constraints as given by the pronunciation
lexicon.

q̂(�; t;�t): probability that the phoneme � produces
the acoustic vectors xt+1; :::; xt+�t. �t is in the order
of an average phoneme duration, e.g. 6 or 7 10-ms time
frames.

For the phoneme look-ahead pruning, we combine this look-
ahead score q̂(�; t;�t) with the detailed score Qv(t; s).
Thus for a given time frame t, we compute the following
score for each possible pair (�; v) of phoneme arc � and
lexical tree for predecessor word v:

Q̂v(t; �) := q̂(�; t;�t) �Qv(t; S~�) ;

where S~� denotes the �nal state of phoneme arc ~�. For
notational simplicity, we have assumed that there is exactly
one �nal state. If there are several �nal states, we select the
best one. As in all time-synchronous pruning methods, the
pruning is based on computing the best score QLA(t) of all
hypotheses under consideration for time t:

QLA(t) := max
(v;�)

�
Q̂v(t; �)

	
:

A phoneme arc hypothesis (�; v) at time t is removed
(or, depending on the viewpoint, not started at all in the
detailed search) if

Q̂v(t; �) < fLA �QLA(t) ;

where fLA denotes the phoneme look-ahead pruning
threshold. In the experimental tests, we have found that
there is no loss in performance when we use the following
(or a similar) approximation for QLA(t):

QLA(t) �= max
�
fq̂(�; t;�t)g �max

(v;�)
f Qv(t; S�)g ;

where the symbol � stands for an arbitrary phoneme arc
independent of phoneme arc �. This means that we do not
use the lexical constraints when computing the reference
score for the pruning step. However for each individual arc
hypothesis, it is very important to take the exact lexical
constraints into account.
In order to compute the phoneme look-ahead score

q̂(�; t;�t), we perform a time alignment for each hypothe-
sized phoneme �. To this purpose, we de�ne:

��(�; s; t): score of time aligning the acoustic vectors
xt+1; :::; xt+� with the states 1; :::; s of phoneme arc �.
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Figure 1. Phoneme look-ahead using a 6-state HMM.

The time alignment scores ��(�; s; t) are computed by
dynamic programming. The details and the computational
e�ort depend on the type of phoneme models and of
the underlying HMM. In general, we use a 6-state HMM
representing a phoneme model. For such a 6-state HMM,
the concept of the look-ahead time alignment is illustrated
in Fig. 1. The shadowed area in Fig. 1 marks the potential
states in which the look-ahead time alignment path may
end.
To compute the phoneme look-ahead score q̂(�; t;�t), we

have to consider the scores of the potential ending states of
the time alignment path. By normalizing the scores with
respect to di�erent durations � , we obtain the following
equation for the phoneme look-ahead score q̂(�; t;�t):

q̂(�; t;�t) :=

max
n
max
s
f��(�t; s; t)g ; max

�

�
��(�; S; t)

�t=�
	o

;

where the symbol S stands for the �nal state of the HMM.
So far, we have not considered the computational

cost of computing the time alignment look-ahead scores.
Evidently, the phoneme look-ahead can only result in
a speed-up of the search process if this additional
computational e�ort is su�ciently small. Using the same
phoneme models in both the detailed search and the look-
ahead time alignment is prohibitive for the following reason.
Like most other speech recognition systems, we use context
dependent (CD) phoneme models rather than context
independent (CI) phoneme models in the detailed search
process. The number of these CD models is typically in the
range of several thousands. In addition, for the emission
distributions of the HMMs, we use mixture distributions
with a huge number of component densities.
Therefore to keep the e�ort for computing the phoneme

look-ahead scores small, we consider the following methods:

� Instead of CD phoneme models, we use CI phoneme
models, say 40� 50, for the phoneme look-ahead.

� We use only a small number of component densities,
e.g a total of a few hundreds, to model the emission
distributions.
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Figure 2. Phoneme look-ahead using a 1-state HMM.

� The calculation of the phoneme look-ahead can be
performed every second time frame [4].

� To further reduce the amount of computation, we
simplify the structure of each phoneme by collapsing
all states into only one state as shown in Fig. 2 [3]. As
a result, each model has only one emission probability
distribution.

5. EXPERIMENTAL RESULTS

The experimental tests were carried out on the ARPA
North American Business (NAB'94) H1 development corpus
comprising 310 sentences with a total of 7387 words.
199 of the spoken words were out-of-vocabulary words.
The training of the emission probability distributions was
performed on WSJ0 and WSJ1 training data. In all
experiments, we used about 290 000 Laplacian mixture
densities (with a single pooled vector of absolute deviations)
for each gender and a bigram language model with a
perplexity (PP ) of 198.4. The experiments were performed
on a SGI workstation with a R4400 processor (91.7
SpecInt92).
First, we investigated the e�ect of the LM look-ahead on

the size of search space and the word error rate. Table 1
shows the results and the set-up of the LM look-ahead tree
in terms of the number of arcs and arc generations (gen.)
and of the maximum number of LM look-ahead trees. In
addition, the search space, the recognition word error rate
(DEL{INS and WER[%]) and the real time factor (RT) are
given. In an initial experiment, we performed two tests
without any language model look-ahead. Then we tested
the unigram LM look-ahead as described in [8]. The uni-
gram LM look-ahead reduces the search space by a factor
of about 4 without loss in recognition accuracy. Finally, we
tested the bigram LM look-ahead for various numbers of
arc generations used for the LM look-ahead trees, namely
17 (full look-ahead tree), 3, 2, 1 as shown in Table 1. We
see that the best results are obtained for 3 and more arc
generations. The search space is reduced by a factor of
about 5 over that of the unigram LM look-ahead.
In a second recognition experiment, we added the

phoneme look-ahead to the bigram LM look-ahead and
studied the e�ect on the search e�ort. Unlike the detailed
search, in which 4688 context dependent phoneme models
are used, the inventory of the look-ahead phoneme models
consists of only 43 context independent phoneme models.
In addition, there is a silence model that always comprised
a single state. We tested the following variants of the look-
ahead models: 1-state models with a total of either 175 or



Table 1. E�ect of the LM look-ahead on the search e�ort and recognition results (NAB'94 H1 development set;

bigram LM with PP = 198:4).

LM look-ahead tree search space recognition errors [%]
LM look-ahead gen. arcs trees states arcs trees DEL / INS WER RT

no { { { 65568 16932 26 2.4 / 2.5 16.3 139.3
{ { { 50020 13034 20 2.5 / 2.5 16.6 115.7

unigram 17 63155 1 16960 4641 32 2.5 / 2.5 16.4 86.2
(PP = 972:6) 17 63155 1 9443 2599 22 2.6 / 2.5 16.8 68.9
bigram 17 29270 300 3312 935 13 2.5 / 2.6 16.5 41.6
(PP = 198:4) 3 12002 300 3277 924 13 2.4 / 2.6 16.5 39.8

2 4097 300 3611 1012 12 2.4 / 2.6 16.9 40.8
1 544 300 5786 1643 11 2.6 / 2.8 17.0 45.8

Table 2. E�ect of the phoneme look-ahead (�t = 6) in combination with the bigram LM look-ahead (17 phoneme

generations) on the search e�ort and recognition results (NAB'94 H1 development set; bigram LM with PP = 198:4).

phoneme look-ahead search space recognition errors [%]
model densities states arcs trees DEL / INS WER RT

1-state HMM 175 1901 452 10 2.5 / 2.7 16.6 22.7
175 1551 359 9 2.5 / 2.7 16.7 19.5
675 1808 434 11 2.5 / 2.6 16.6 20.7
675 1508 354 10 2.5 / 2.6 16.8 18.0

6-state HMM 497 2472 605 12 2.5 / 2.6 16.5 24.5
497 1671 379 10 2.4 / 2.7 16.8 20.7
1926 2160 516 11 2.5 / 2.6 16.5 22.8
1926 1784 413 11 2.5 / 2.7 16.6 21.0

675 densities and 6-state models with a total of either 497
or 1926 densities. Table 2 summarizes the results. It can
be seen that there are no signi�cant di�erences between
the two look-ahead variants. Increasing the number of
mixture densities in the phoneme look-ahead leads to a
small reduction of the search e�ort. For the best choice
of conditions, the size of the search space and the total
recognition time are halved while the word error rate goes
up only from 16.5% to 16.6%. The computational cost of
the phoneme look-ahead is negligible (5%) in comparison
with the e�ort for the total search.

6. SUMMARY

This paper has presented and studied the combination of
language model look-ahead and phoneme look-ahead for
improved beam search. The experiments performed on the
NAB'94 20 000-word task have shown that this combination
leads to a reduction of the size of search space by a factor of
about 30 with virtually no loss in the recognition accuracy
in comparison with no look-ahead techniques. Due to the
cost of the likelihood calculations for the detailed search,
this results in an overall speed-up of the recognition process
by a factor of about 5.
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