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ABSTRACT

A large-vocabulary continuous-speech recognition (LVCSR)
system was developed and evaluated.  To evaluate the system,
a Japanese business-newspaper speech corpus was designed
and recorded.  The corpus was designed so that is can be used
for Japanese LVCSR research in the same way that the Wall
Street Journal (WSJ) corpus, for example, is used for English
LVCSR research.  Since Japanese sentences are written
without spaces between words, a morphological analysis was
introduced to segment sentences into words so that word n-
gram language models could be used.  To enable the use of
detailed word n-gram (n≥3) language models, a two-pass
decoding strategy was applied.  Context-dependent (CD)
phone models and word trigram language models reduced the
word error rate from 80.2% to 10.1% (an error reduction of
about 88%).  This result shows that CD phoneme modeling
and word trigram language models can be used effectively in
Japanese LVCSR.

1. INTRODUCTION
Large-vocabulary continuous speech recognition (LVCSR)

is being extensively studied for the American and British
English, French, German, and Italian languages using
vocabularies taken from business newspapers such as the Wall
Street Journal (WSJ) [1-9].  However, no similar research has
been reported for the Japanese language.  This is mainly
because Japanese sentences are written without spaces
between words, so they are very difficult to segment
automatically.  Therefore, it is difficult to estimate a word n-
gram language model, which is very useful for LVCSR.  To
enable word n-grams to be used for Japanese LVCSR, we have
introduced a morphological analysis to segment Japanese
sentences into words (morphemes).

To evaluate our recognition system, we designed a speech
corpus that could be used for Japanese LVCSR research [10],
since no Japanese speech-corpus comparable to the WSJ
corpus existed.  We designed a business-newspaper speech
corpus using articles taken from about five years of the Nihon
Keizai Shimbun (the Nikkei newspaper).  A word frequency
list of 623k words was derived from 6.8M sentences.
Vocabularies of 7k, 30k, and 150k were defined, which

provides the same coverage as the vocabulary sizes (5k, 20k,
and 64k) in the WSJ corpus.

We studied acoustic modeling and language modeling for
Japanese LVCSR using this speech corpus [10].  For 7k
vocabulary, the word error rate was 82.8% when context-
independent acoustic models and no language models were
used.  This improved to 10.1% when both context-dependent
acoustic models and trigram language models were used.  This
result proved that an n-gram language model works well in
Japanese LVCSR.

2. DESIGN OF THE CORPUS
Newspaper articles from five-year period were divided into

two parts: a four-years-and-nine-months component for
training and a three-month component for  testing.

2.1  Text preprocessing
Texts were preprocessed before the morphological

analysis.  This was done to keep the sentences easy to read
and to avoid morphological-analysis errors so that language
models could be realistically estimated.  Since our target i s
LVCSR and not sentence dictation, we discarded marks (e.g.
quotation marks, bullets, etc.) that are usually not pronounced
in spoken communication.

Sentences that were too long were discarded from the
training and test sets, because long sentences are more
difficult to read.  We assumed that the distribution of the
sentence length, in terms of the number of words, was a
normal distribution. The number of words in a sentence was
25.6 on average for both the training and test sets, and the
standard deviation was 13.8 words for the training set and
13.5 words for the test set.  Sentences with lengths in terms

of the number of words that lay in the range of the mean ±2σ
were used to make a word frequency list and for training n-
gram language models.  The test set consisted of sentences

whose lengths were in the range of the mean ±σ to ensure
readability.

After this text preprocessing, there were 6.8M sentences
and 180M words in the training set, and 342k sentences and
9.8M words in the test set.

2.2  Morphological analysis



The segmentation into words required sophisticated
morphological analysis.  Our morphological analyzer has a
dictionary of 250k morphemes, and the accuracy of the
morphological analysis was about 95% for the Nikkei
newspaper.  In this study, we defined words by morphemes
according to the lexicon of our morphological analyzer.

A word frequency list is a frequency-based-sorted list of
words that appeared in the training set.  We had a list of 623k
words.  Since the morphological analyzer has a dictionary of
250k words, 373k out of the initial 623k words were analyzed
and designated as unknown words.  Most of these unknown
words were proper nouns or unusual technical terms.

To eliminate morphological and typographical errors, the
sentences including words that did not appear in the top 150k
words (coverage 99.6%) in the word frequency list were then
discarded.

2.3  Design of the corpus
Table 1 shows the coverage of our recognition task and

the WSJ recognition task.  There are more distinct words used
in the Nikkei than in the WSJ.  Compound-words, which are
particularly common in Japanese, result in a large number of
distinct words.  In addition, inflection increases the nominal
number of distinct words in Japanese.  The out-of-vocabulary
rate for the Nikkei task is higher than that for the WSJ task.
We defined 7k and 30k vocabularies to have the same
coverage as the 5k and 20k vocabularies for the WSJ task.

To evaluate an LVCSR system, we defined five subsets
according to the vocabulary size and the number of out-of-
vocabulary (OOV) words in a sentence for each of the training

and testing sets.  Table 2 lists the description of these
subsets.  The OOV words were limited to those appearing in
the 150k-word vocabulary, that is, our task was limited to
150k words.

Each of 54 speakers uttered 100 sentences, i.e., 20 from
each of the subsets.  Fifty sentences were selected from the
training set, and fifty sentences were selected from the testing
set.  Speech was recorded simultaneously through a head-
mounted Sennheiser (HMD-410) microphone and a desk-
mounted Crown (PCC-160 phase coherent cardioid)
microphone.  Speech recorded through the head-mounted
microphone was used for the experiments described in this
paper.

The average number of words in a sentence for each subset
ranged from 20.9 to 27.4, and the average time duration of a
sentence ranged from 6.3 s to 8.6 s.  As the number of
vocabulary words increased, the length increased, although
not significantly.

3.  ACOUSTIC MODELING
We evaluated context-independent, and diphone/triphone-

context-dependent models.  Each model was trained using a
large population of speakers.  Speech data from tasks other
than the newspaper articles were used to train the acoustic
models.  In addition, the microphones used for recording the
training and testing speech were different; training speech
was recorded through desk-mounted microphones and testing
speech was recorded through head-mounted microphones.
Therefore, our task may have been more difficult than the WSJ
task, where the training and testing speech were recorded from
the same task.  We used phonetically-balanced-sentence
speech to train the acoustic models.  In total, more than
15,000 utterances from 58 speakers were used.

Every phone model has three states, except for the silence
model, which has one state.  Each state has four mixture
Gaussian distributions.  Speech was sampled at 12 kHz and
digitized into 16 bits.  The acoustic features used were 16 LPC
derived cepstra and log-energy, and their first derivatives
(delta-features).

Table 3 lists the results of the phoneme recognition
experiments.  We used 42 phoneme classes, including silence.
In these experiments, continuous speech recognition using a
simple phoneme-loop grammar network was carried out with

Table 2    Description of subsets

Subset Description

7k Sentences composed solely from 7k vocabulary

7k+ Sentences composed from 7k vocabulary and up
to two OOV words

30k Sentences composed solely from 30k vocabulary

30k+ Sentence composed from 30k vocabulary and up
to two OOV words

30k++ Sentences composed from 30k vocabulary and
more than two OOV words

Table 1    Comparison of Nikkei and WSJ 

Nikkei
(Japanese)

WSJ
(English)

Training text size 180 M 37.2 M
Distinct words 623 k 165 k

5k coverage 88.0 % 90.6 %
7k coverage 90.3 % -

20k coverage 96.2 % 97.5 %
30k coverage 97.5 % -
65k coverage 99.0 % 99.6 %
150k coverage 99.6 % -
20k OOV rate 3.8 % 2.5 %

Table 3    Phoneme recognition accuracy (%);
Effect of context-dependent modeling

CI Di2000 Di1000 Di700 Di500 Di300 Di100

CI 49.2 58.0 58.4 58.2 57.9 57.2 56.7
Tri600 58.4 60.4 60.6 60.6 57.9 60.1 -

Tri500 59.4 61.0 60.9 61.0 60.5 60.6 -

Tri400 58.9 61.0 60.9 61.2 61.1 60.8 -

Tri300 60.6 61.5 61.2 61.6 61.5 61.3 -
Tri200 60.4 60.9 60.6 60.9 60.9 60.8 -

Tri100 60.9 61.3 60.8 61.0 61.1 60.9 -

Tri50 60.9 - - - - - -



the phoneme defined as the recognition unit.  Accuracy was
calculated as

Accuracy
S D I

N
= − + +



 ⋅1 100 ,

where S, D, and I are the number of substitution, deletion,
and insertion errors, respectively.  Here, for example Di2000
denotes a diphone-context-dependent model set whose
training samples could be observed more than 2000 times in
the training set, and  TriNumber denotes a triphone-context-
dependent model set.  The highest accuracy of 61.6% was
achieved when Di700 and Tri300 model sets were used
together with context-independent (CI) models and
smoothing was applied.

4.  LANGUAGE MODELING
Word n-grams were estimated using the 6.8M sentences of

the training set.  Most of the bigrams and trigrams were
singletons (they appeared only once in the entire training
set).  Since the average number of bigram and trigram
occurrences were low, that is, we had only five to seven
occurrences for each trigram on average, the language models
obviously needed to be smoothed.  We used the back-off
smoothing method proposed by Katz [11].

Using the smoothed n-gram language models, we
evaluated the test-set perplexity.  The test-set sentences of the
subsets 7k and 30k were used to calculate the test-set
perplexity.  Table 4 shows the test-set perplexity for the
Nikkei task compared with that for the WSJ task [8].  The test-
set perplexities were smaller for the Nikkei task than for the
WSJ task.

When the language models for the Nikkei task were
estimated, punctuation marks were considered.  Therefore, it is
reasonable to compare the perplexities with the VP case of the
WSJ task.  However, quotation marks were omitted in our text
preprocessing, and the definitions of words were different for
our task and for the WSJ task.  We should note these different
conditions.

5.  TWO-PASS DECODING
To utilize word trigram language models, we applied a two-

pass decoding approach.  Since there were 2.1M bigrams and
17.1M trigram, it is inefficient to use all the n-gram models
in a single search pass.  Therefore, we used bigram models for
the first pass and trigram models for the second pass.  The

first pass search produced N-best hypotheses using a simple
word-loop grammar network and bigram models.  Then, in the
second-pass, the best hypothesis was found among the N-best
hypotheses using trigram language models.  The same
acoustic models were used for the first and second pass search;
that is, acoustic scores were kept after the first pass search and
were re-used when necessary in the second pass along with the
trigram language scores.  The weighting factors for acoustic
and language scoring were optimized experimentally for both
the first pass and the second pass.

6.  CSR EXPERIMENTS
Continuous-speech recognition experiments were carried

out for the 7k vocabulary task using the first 10 speakers’
speech from the recorded speech corpus.  Context-independent
and intra-word context-dependent acoustic models were used.
As context-dependent models, we used the model set that
achieved the best result in the preliminary phoneme
recognition experiments.  The context-dependent models
consist of 502 triphone-context , 204 diphone-context, and
42 context-independent models.  Figure 1 shows the LVCSR
results.  The word error rate was obtained as

ErrorRate
S D I

N
= + + ⋅100 ,

where S, D, and I are the number of substitutions, deletions,
and insertions, respectively.

The word error rate for the baseline system with context-
independent phoneme models and no language models
(CI+NG) was 82.8% for the test set.  This improved to 36.3%
when the bigram language models were used (CI+BG).  Using
context-dependent phoneme models and introducing log-

energy and ∆-log-energy further improved the word error rate
to 20.0% (CD+BG+ENGY).  Finally, word trigram language
models were applied to find the best hypothesis among the N-
best hypotheses produced by CD+BG+ENGY in the second-
pass search, and this improved the word error rate to 10.1%
(CD+TG+ENGY).  In other words, the error rate was
approximately halved when bigram language models were
incorporated, and approximately halved again by the further
addition of the context-dependent acoustic models with log-

energy and ∆-log-energy.  The word trigram again reduced the
remaining error by approximately half.

Table 4    Test-set perplexity

Vocabulary 
size

Language 
model

Test-set perplexity

Nikkei
WSJ

VP NVP

7 k / 5 k
Unigram 482 - -
Bigram 49 80 118
Trigram 27 44 68

30 k / 20k
Unigram 667 - -
Bigram 77 158 236
Trigram - 101 155

Figure 1    LV CSR experimantal results

CI+NG

CD+NG

CI+BG

CD+BG

CD+BG+ENGY

Word error rate
1009080706050403020100

CD+TG+ENGY



As the performance differed depending on the speakers,
Figure 2 illustrates the results in the CD+BG+ENGY case for
each speaker.  Each speaker read different sentences, which
varied in recognition difficulty, so the difference in
performance could be attributed to this.  We calculated the
perplexity for each speaker assuming that the sentences for
one speaker made up a test-set.  As shown in Figure 2, the
test-set perplexity varied from 67.8 to 94.0.  Figure 3
illustrates the relationship between the test-set perplexity and
the word error rate.  The results show that the error rate
increased as the perplexity increased.  The solid line indicates
the first-order regression.  The deviation from the line can be
interpreted as variability due to speaker-dependent acoustical
characteristics.

6.  SUMMARY
We have described the design of a speech corpus derived

from a Japanese business newspaper for LVCSR and have
evaluated an LVCSR system.

Vocabulary sizes of 7k and 30k were defined according to
word frequency, and sentences for the speech corpus were
chosen from Japanese business newspaper articles covering
five years.  Fifty-four speakers contributed to the speech
corpus.

An LVCSR system was evaluated using the first 10
speakers from the speech corpus.  For the 7k vocabulary task,
the word error rate for the baseline system, which used
context-independent acoustic models and no language models,
was 82.8%.  This improved to 10.1% when context-dependent
acoustic models and trigram language models were used.  The
error reduction, therefore, was 88%.  Bigram and trigram
language models and context-dependent acoustic models
reduced the error rate very effectively.  The bigram language
models reduced the error by half.  Similarly, the further
addition of the context-dependent acoustic models again
halved the remaining error.  Finally, the trigram language
models reduced the remaining error by another half.

We are further improving both acoustic models and
language models.  For the acoustic models, inter-word

context-dependent models are currently being introduced
instead of intra-word context-dependent models.  And for the
language models, we are introducing higher order n-gram
models in addition to trigram and bigram models.
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Figure 2    Word error rate and test-set perplexity
for each speaker
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Figure 3    Relation between perplexity and 
word error rate
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