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ABSTRACT

Recognition of conversational speech is one of the most

challenging speech recognition tasks to-date. While recog-

nition error rates of 10% or lower can now be reached on

speech dictation tasks over vocabularies in excess of 60,000

words, recognition of conversational speech has persistently

resisted most attempts at improvements by way of the

proven techniques to date. Di�culties arise from shorter

words, telephone channel degradation, and highly disuent

and coarticulated speech. In this paper, we describe the

application, adaptation, and performance evaluation of our

JANUS speech recognition engine to the Switchboard con-

versational speech recognition task. Through a number of

algorithmic improvements, we have been able to reduce er-

ror rates from more than 50% word error to 38%, measured

on the o�cial 1996 NIST evaluation test set. Improvements

include vocal tract length normalization, polyphonic mod-

eling, label boosting, speaker adaptation with and without

con�dence measures, and speaking mode dependent pro-

nunciation modeling.

1. INTRODUCTION

The recognition of conversational speech over telephone

lines such as the Switchboard LVCSR corpus represents one

of the most challenging speech recognition tasks to date.

The Switchboard corpus and conversational speech in gen-

eral have persistently resisted attempts to improve results

to the level of read speech. After several years of intense

research by a number of large research teams, error rates on

conversational telephone speech (the Switchboard corpus)

have been improved considerably from an initial 70+% word

error, but still remain stubbornly high. O�cial test results

in 1995 still averaged 52% word error across participating

sites. Di�culties arise from phenomena found mainly in

this type of speech, such as the usage of shorter words and

the signi�cant presence of highly disuent and coarticulated

speech. Acoustic degradations from the telephone channel,

such as cross-talk, clicks, channel noise and spikes, also have

a negative e�ect on performance.

In the following, we describe our work on developing a

speech recognition system for the Switchboard Large Vo-

cabulary Conversational Speech Recognition (LVCSR) task.

In addition to giving an overview of our system, we will

highlight several noteworthy enhancements. These include

vocal tract length normalization, polyphonic modeling, la-

bel boosting, speaker adaptation with and without con�-

dence measures, and speaking mode dependent pronuncia-

tion modeling.

2. SYSTEM OVERVIEW

2.1. Preprocessing

During the pre-processing stage, we perform several opera-

tions which make it easier for the recognizer to do its job.

First, an adaptive crosstalk �lter is used to eliminate much

of the channel crosstalk present in the 4-wire setup of the

Switchboard recordings.

We want to remove crosstalk in signal a(t) caused by the

speech signal sb(t) of speaker B with

a(t) = sa(t) + x(t) � sb(t)

where sa(t) is the speech signal of speaker A. The linear

model of the crosstalk path x(t) can be estimated by using a

FIR �lter h(t) and the LMS adaptation algorithm. We allow

adaptation only when the power of both channels indicate

that signi�cant crosstalk is present (see �gure 1).
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Figure 1. Adaptive Crosstalk �lter

Due to recording conditions of the Switchboard data the

two channels are not always synchronous and the time shift

happens to drift up to a second over a conversation. For this

reason we applied an adaptive shift control that moves the

input window of the �lter according to the correlation of the

two channels which is implicitly encoded in the coe�cients

of the �lter. Given an FIR �lter with the impulse response

fh[t] j t = �L : : : Lg we de�ne the mass center of the �lter

as m =
P

L

i=�L
i � jhij. We then control the shift v by

changing it by �v = �(m
L
). The constant � determines the

adaptation rate of the shift control.

After the crosstalk is �ltered out, the speech signal is

passed through a silence detector in order to segment the



conversation into reasonably sized chunks and �lter out long

sections of silence. Using the channel signal power as its

input feature, a continuous density silence/speech classi�er

is trained, and proceeds to label the input signal as speech

or silence. Recent tests have shown that we loose roughly

2% absolute from this automatic segmentation procedure

when compared against an optimal segmentation which is

privy to the true word boundary information.

Speakers come in all shapes and sizes, and so does their

speech. We use a maximum likelihood based vocal tract

length normalization algorithm in order to remove some of

the variation due to speakers' di�ering vocal tract charac-

teristics. A non-linear warping [3] in the frequency domain

is done based on the second formant according to:

f̂ = fK
3f

2F

K = F2= �F2

where K is the warping factor for a particular speaker

with second formant F2, F is the Nyquist frequency, and
�F2 is the average second formant for all speakers.

In order to �nd F2 for a speaker, an initial estimate is

made by using a formant tracker. A phoneme recognizer is

then used to calculate the likelihood of the signal for sev-

eral di�erent warping factors around this initial estimate.

In this way the maximum likelihood estimation of F2 is

determined. We observe a performance gain of almost 2%

absolute by using this ML-VTLN technique over simply pro-

cessing the F2 that the formant tracker provides.

The �nal preprocessing step is the calculation of the in-

put features for our speech segments. These are derived by

using a Linear Discriminant Analysis (LDA) transforma-

tion over a 9 frame window of Perceptual Linear Prediction

(PLP) coe�cients. The LDA transformation has the dual

bene�t of reducing the feature space from 117 dimensions

to 48, and of optimally separating the phonetic classes.

2.2. Acoustic Modeling using Polyphones

Context-dependent acoustic models have been applied in

speech recognition research for many years, and have been

shown to increase the recognition accuracy signi�cantly.

The most common approach is to use triphones. Recently,

several speech recognition groups have started investigating

the use of larger phonetic context windows when building

acoustic models [1, 6]. We also make use of a larger context

in our recognizer by allowing questions in the allophonic de-

cision tree not only referring to the immediate neighboring

phones but also to phones further away (for Switchboard

we used a context of two instead of the context of one as in

the triphone setup).

In a two stage decision tree based clustering approach the

codebooks are clustered �rst and, based on the clustered

codebooks, in a second step the distributions are clustered.

For Switchboard we ended up having 4000 codebooks and

20000 distributions. This clustering approach implements a

exible parameter tying scheme, and gave us signi�cant im-

provement across many tasks, including WSJ, Switchboard,

and the Spontaneous Scheduling Task. It has also proved

itself across several languages (German, Spanish, English)

[4]. For Switchboard, we have observed a WER reduction

of 2.4% absolute.

2.3. Language Modeling

The Switchboard corpus contains approximately 2 million

words of training text. Typically only about 60% of the

trigrams in the test text were actually seen in the train-

ing text. Smoothing of the trigram models was therefore

seen an important possible source for LM improvement. We

have implemented class based models and linear interpola-

tion algorithms to make maximum use of the Switchboard

data that we have, and to integrate models being built on

the NAB (North American Business News) corpus. Our

evaluation language model uses a linear interpolation of 4

trigram backo� models: one standard Switchboard trigram

model, one standard NAB model and two class based mod-

els built on the Switchboard corpus. The classes for the

class based models were derived from NAB and Switch-

board respectively. Context dependent linear interpolation

did not show a signi�cant improvement compared to the

use of context independent interpolation. Using these tech-

niques we achieved a WER reduction of 1% absolute over

the standard Switchboard trigram model.

buying sailing Friday mainly

adding bowling Monday mostly

burning camping Saturday partly

owning dancing Sunday primarily

renting setting Sundays purely

Table 1. SWB class based LM: sample classes

The word classes for our class-based models were built

using a procedure that optimizes the bigram perplexity cri-

terion [5]. Table 1 shows examples of some of the automati-

cally generated classes for the Switchboard model. In order

to derive e�ective word classes, we classi�ed only words

that have more than a minimum number of counts and in-

troduced a prior on the number of classes. This enables us

to tune the number of classes and run the class clustering

procedure in reasonable time.

In the Switchboard corpus, silences of various durations

are interspersed with speech (for instance, when a speaker

listens to what the other speaker is saying). For language

modeling purposes, we have found that the exact treatment

of silence can make a signi�cant di�erence in a system's per-

formance. In a speech recognizer, short silence is usually

modeled as an \optional silence" that can be inserted at

any point with a context-independent probability that does

not modify the context of the language model. Recent ex-

periments have shown that treating some silences as regular

LM tokens yields a WER improvement of approximately 1%

absolute. Since the NAB database is not annotated with si-

lence, we used a mapping that changed several punctuation

markers to silence tokens. This allowed us to train an in-

terpolated language model that included the silence word

token.

In addition to the above, we have investigated both se-

lective unigram cache models and maximum entropy trigger

models. Even though we have achieved signi�cant perplex-

ity reductions with some of these techniques, they did not



experiment WER

no adaptation baseline 38%

adapt on hypothesis 37%

adapt on Correct only 35%

adapt on Transcription 31%

Table 2. Con�dence Measure Performance

reduce the word error, and so were not applied in the recent

evaluation.

3. LABEL BOOSTING

Several stages of our training algorithm (LDA, Kmeans,

BW) use a Viterbi search to �nd the best path through

a training utterance. For reasons of speed, we currently

generate Viterbi path labels only once for each utterance

in our training set, and run the di�erent stages of training

using these labels. The accuracy of our acoustic models

thus depends heavily on the accuracy of these labels. The

MLLR speaker adaptation algorithm (described below) can

be used to adapt the acoustic models to each speaker in

our training set, and thus we can e�ectively generate labels

with the equivalent of a speaker dependent recognizer. We

have noted consistent improvements of 1-2% using this tech-

nique. This is not surprising, when we note the tremendous

performance gain that adaptation can bring to the system

when used with known transcriptions (table 2).

4. ACOUSTIC STABILITY CONFIDENCE

MEASURE

Similar to the N-Best con�dence measure described in [2],

the idea behind our acoustic stability con�dence measure

algorithm is that we expect regions of high acoustic stabil-

ity to be regions that are relatively error free, and regions of

low acoustic stability to be regions that will frequently con-

tain recognizer errors. We can isolate regions of stability for

a single utterance by comparing the hypothesis of our rec-

ognizer over several di�erent language model weights and

word penalties. This in e�ect is a way of adding LM noise

to the recognizer. The less stable words in the hypothesis

will tend to change with the minimal addition of this noise.

We calculate the con�dence of a speci�c word, given a list

of hypotheses with varying LM weights and penalties, as

the ratio of the number of hypotheses in which the word

occurs to the total number of hypotheses.

One advantage of our con�dence measure over the N-

Best measure is that for a very stable utterance, all our

hypotheses could potentially have the same word string, and

thus the con�dence of the words in this hypothesis would

be very high. The con�dence of the words using the N-Best

measure is limited, since some word must change in each

hypothesis of the N-Best list.

Preliminary results show that this con�dence measure

technique classi�es words correctly (errors as errors, and

correct words as correct words) with an accuracy of ap-

proximately 70%. It has also proven useful during our un-

supervised adaptation procedure, as described below.

5. MLLR UNSUPERVISED SPEAKER

ADAPTATION

Although the use of our ML-VTLN algorithm helps in re-

ducing the variance of speakers' voice characteristics, it

doesn't solve the problem alone. In VTLN, we try to nor-

malize a speaker's speech signal by stretching or compress-

ing along the frequency axis, which roughly corresponds

to changing one parameter: the vocal tract length. But

many aspects of the speech signal are not normalized by

this simple approach. For this reason, a form of unsuper-

vised adaptation is used in our evaluation system. It has the

advantage of performing an arbitrary linear transformation

on the acoustic models.

We use a maximum likelihood linear regression (MLLR)

unsupervised speaker adaptation algorithm [7] to adapt our

acoustic models to speci�c speakers during testing. Given

a set of recognition hypotheses for a speaker's utterances,

the algorithm transforms the acoustic models in order to

maximize the likelihood of these hypotheses. The actual

number of transformations performed is determined auto-

matically based on how much adaptation data is available

by the model clustering stage of the algorithm.

This model clustering algorithm combines all Gaussians

from our acoustic models into one cluster. This cluster is

then split along the axis of highest variance into two clus-

ters. These new clusters are then also split, and the proce-

dure is iterated until the amount of training data for each

Gaussian cluster reaches a minimum threshold. In order to

�nd the number of transformations for each test speaker,

we prune this cluster tree until we have a minimum number

of samples in each leaf for the test speaker. We then use the

MLLR algorithm to �nd a transformation for each of these

model clusters. This automatic clustering algorithm has the

principle advantage in that we do not have to specify the

number of transformations that we want to perform during

adaptation. This will be selected automatically based on

the amount of adaptation data available.

These adapted models can then be used in a new recog-

nition pass, thus providing better hypotheses. This proce-

dure could in principle be iterated several times, each time

tuning the models based on the new recognition hypothe-

ses. In practice, the performance asymptotes quickly. For

the Switchboard evaluation, three recognition passes where

performed, including two adaptation steps. After one iter-

ation, a WER gain of 1.4% absolute was achieved. An adi-

tional iteration of adaptation, yielded only another 0.2%.

Current results show WER improvements of 2.6% absolute

over recognition without adaptation.

The fewer errors there are in a hypotheses, the better

the adaptation algorithm can adapt to the given speaker.

This idea is con�rmed by the results shown in table 2, in

which we see a large decrease in word error when the adap-

tation algorithm is given the correct transcription on which

to adapt itself, instead of the hypothesis string. Another

interesting experiment shows that if we can �lter out the

errors of a hypothesis such that we don't adapt on them,

we again get a substantial performance increase. This is

also shown in table 2, where we adapt our recognizer on

correct parts of the hypothesis only.

These results naturally lead us to the use of con�dence



1 [AX IX] N ! EN

2 [AX IX] M ! EM

3 [AX IX] L ! EL

4 [AX IX] R ! AXR

5 [T D] ! DX / [+VOWEL] [AX IX AXR]

6 [T D] R ! DX

7 L ! 0 / Y [AX IX AXR]

8 [T D] ! 0 / [+VOWEL] [TH DH]

9 [T D] ! 0 / [+CONS +CONTINUANT] WB

10 R AX ! ER / [-WB] [-WB]

Table 3. Sample of Variant Pronunciation Rules

measures as a way of �ltering out the errorful parts of a

recognizer hypothesis. Using our con�dence measure to aid

the unsupervised adaptation algorithm improves the recog-

nizer by 1.4% absolute compared to using adaptation with

no con�dence measure. We feel that further improvements

in the con�dence measure is one of the most fruitful areas

of research for improving our recognition rates in the near

future.

6. SPEAKING MODE DEPENDENT

PRONUNCIATION MODELING

In spontaneous conversational speech there is a large

amount of variability due to accents, speaking styles and

speaking rates (also known as the speaking mode) [8]. Be-

cause current recognition systems usually use only a rela-

tively small number of pronunciation variants for the words

in their dictionaries, the amount of variability that can be

modeled is limited. Increasing the number of variants per

dictionary entry is the obvious solution. Unfortunately, this

also means increasing the confusability between the dictio-

nary entries, and thus often leads to an actual performance

decrease. We believe that the probability of encountering a

particular pronunciation variant is a function of a speaker's

speaking mode, and thus cannot be modeled adequately us-

ing static word variant probabilities.

We expand our recognition dictionary by applying a set of

phonological rules in order to generate a variety of pronun-

ciation variants. A sample of these rules is given in table 3.

By the use of these rules, our dictionary grew to have an av-

erage of 1.8 variants per base entry. Based on this expanded

dictionary, we perform a forced alignment pass through our

training data. During this pass, we extract training data for

each of the rules, by noting the speaking mode indicators

associated with each rule. The speaking mode indicators in-

clude features such as measures of the speaking rate, word

durations, and the fundamental frequency of the speech.

These features are then used to train a set of decision trees,

one tree for each rule. These trees are used to predict the

mode dependent pronunciation rule probabilities.

We have implemented this technique as part of our lat-

tice rescoring pass. Based on these trees, the words in the

lattice, and the speaking mode indicators associated with

these words, we can generate dynamic pronunciation prob-

abilities for the various word variants. Preliminary results

indicate a WER decrease of 1.7% absolute even using a very

restricted set of indicators.

experiment init WE end WE % change

Polyphonic System 46.0% 43.6% 5.2%

VTLN 46.0% 43.9% 4.5%

Label Boosting 43.6% 42.4% 2.7%

MLLR Adapt. + CM 43.4% 40.8% 6.0%

ML-VTLN 40.2% 38.4% 4.5%

SWB LM + sil 38.4% 37.4% 2.6%

Mode dep. Rules 39.0% 37.6% 3.5%

Table 4. Performance Gain Summary

7. CONCLUSION

A variety of signi�cant enhancements to the Janus speech

engine have reduced the error rate on the Switchboard

LVCSR task from over 50% to 38.4%. A summary of the

enhancements, together with their approximate respective

improvements is shown in table 4. Note that several of these

numbers come from results on the Switchboard development

test set, and several from the evaluation test set.
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