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ABSTRACT

In modern telecommunications, it is often desirable to

scramble the contents of the information. This paper

presents a particularly e±cient method of analogue sig-

nal scrambling. A stationary process is subjected to

scrambling by means of a linear periodic time-varying

¯lter. We observe then a cyclostationary process. We

demonstrate that perfect reconstruction is possible. In

presence of overlapping spectra, unscrambling requires

a time-varying ¯lter. We apply this method to scram-

ble stationary binary signals. Simulations show that

the system is additive noise resistant.

1. INTRODUCTION

These days most encryption is done digitally. Yet, ana-

logue scramblers are know to exhibit desirable proper-

ties in numerous applications, such as speech transmis-

sion [1]. In fact, they do not need signi¯cally bandwith

increasing. Within this framework, [2] highlighted the

interest of scrambling by means of linear periodic time-

varying ¯lters. In the reconstruction phase, the authors

proposed using linear invariant time ¯lters for non-

overlapped spectra. The present contribution extends

the existing methods to the (in theory) perfect recon-

struction of overlapped spectra. It is shown that this

extension requires the application of time-varying ¯l-

ters in order to obtain a su±cient reconstruction qual-

ity.

2. LINEAR PERIODIC TIME-VARYING

FILTERING

In what follows, the original signal, i.e. the process

to be scrambled, will be denoted Z(t). We let Z =

fZ(t); t 2 IRg be a random stationary process of zero

mean and mean square continuous. £Z(!) is the Cram¶er-
Loµeve spectral representation [3] of Z and the two are

related by:

Z(t) =

+1Z

¡1

ei!td£Z(!) (1)

The basic idea of the scrambling system is to subject

the original process to a linear periodic time-varying

(LPTV) ¯lter, ~h. Let Ht(!) be its frequency response,
periodic in t of period T = 2¼=!0. We de¯ne its Fourier

development, assumed to be su±ciently regular, by:

Ht(!) =

+1X
k=¡1

Ãk(!)e
ik!0t (2)

with:

Ãk(!) =
1

T

TZ

0

Ht(!)e
¡ik!0tdt (3)

Let X(t) be the response of the stationary process Z(t)
through the LPTV ¯lter ~h. X = fX(t); t 2 IRg is the
random process such that:

X(t) =

+1Z

¡1

ei!tHt(!)d£Z(!) (4)

Equations (2) and (4) give:

X(t) =

+1X
k=¡1

eik!0tAk(t) (5)

where the fAk(t)gk2ZZ are the random harmonisable

stationary process of zero mean and mean square con-

tinuous, de¯ned by:

Ak(t) =

+1Z

¡1

ei!tÃk(!)d£Z(!) (6)



(5) corresponds to a continuous series representation

of X. X is then cyclostationary [4] and its spectral

representation can be written as:

d£X (!) =

+1X
k=¡1

Ãk(! ¡ !0)d£Z(! ¡ !0) (7)

d£X(!) is an in¯nite sum of weighted shifted versions

of d£Z(!), centered around multiples of the period and
with weights depending on ~h. The greater the support

of d£Z(!), the more the di®erent versions will tend to

overlap.

3. LINEAR RECONSTRUCTION SCHEME

AFTER AN LPTV FILTERING

The scrambling system that we have introduced is de-

picted by ¯gure 1.
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Figure 1, Scrambling method

In order to have an e±cient scrambling system, we need

a method of perfect information reconstruction. If we

suppose known d£X(!) and the functions fÃk(!)gk2ZZ,
the inversion of equation (7) allows the identi¯cation of

d£Z(!): In practice, it is possible when the information
is supposed to be bandlimited. In this case, we assume

that the support of d£Z(!) is contained in [¡!0; !0[.
Equation (7) shows that the overlap is then limited

to adjacent components. The modulus of d£X (!) is

represented by ¯gure 2.
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Figure 2, Modulus of the observed signal spectra

Equation (7) gives:

8l 2 ZZ; 8! 2 [0; !0[;

Ãl+1(! ¡ !0)d£Z(! ¡ !0)

+Ãl(!)d£Z(!) = d£X(! + l!0)
(8)

(8) corresponds to an in¯nity of linear redundant com-

binaitions of a ¯nite number of variables. To indentify

these variables, we just have to choose two equations

of (8) for two di®erent values of l. For example, if we

work with l and l+ 1, we obtain:

8! 2 [0; !0[;8>>>><
>>>>:

Ãl+1(! ¡ !0)d£Z(! ¡ !0)

+Ãl(!)d£Z(!) = d£X(! + l!0)

Ãl(! ¡ !0)d£Z(! ¡ !0)

+Ãl¡1(!)d£Z(!) = d£X (! + (l ¡ 1)!0)

(9)

The perfect reconstruction of Z(t) is then possible if

there exists an l such that:

8! 2 [0; !0[;

Ãl(!)Ãl(! ¡ !0) ¡Ãl¡1(!)Ãl+1(! ¡ !0) 6= 0

(10)

It follows that the identi¯cation of the spectral repre-

sentation of Z may be obtained by:8>>>>><
>>>>>:

8! 2 [¡!0; 0[; d£Z(!) =
Ãl(!+!0)d£X (!+l!0)¡Ãl¡1(!+!0)d£X (!+(l+1)!0)

Ãl(!)Ãl(!+!0)¡Ãl¡1(!+!0)Ãl+1(!)

8! 2 [0; !0[; d£Z(!) =
Ãl(!¡!0)d£X (!+l!0)¡Ãl+1(!¡!0)d£X(!+(l¡1)!0)

Ãl(!)Ãl(!¡!0)¡Ãl¡1(!)Ãl+1(!¡!0)

(11)

Z(t) is then given by the response of X(t) through a

periodic time-varying ¯lter ~g, such that its frequency

response Gt(!) is de¯ned by:

8! 2 [0; !0[;8><
>:

8k =2 fl¡ 1; lg; Gt(! + k!0) = 0

Gt(! + (l¡ 1)!0) =
Ãl(!)e

¡il!0t¡Ãl+1(!¡!0)e
¡i(l¡1)!0t

Ãl(!)Ãl(!¡!0)¡Ãl¡1(!)Ãl+1(!¡!0)

Gt(! + l!0) =
Ãl(!¡!0)e

¡il!0t¡Ãl¡1(!)e
¡i(l+1)!0t

Ãl(!)Ãl(!¡!0)¡Ãl¡1(!)Ãl+1(!¡!0)

(12)

In general, there exists several l that verify (10). We

can then obtain several reconstructions of Z. This also

allows to introduce error correction in the presence of

interference or frequency selective noise.

4. EXAMPLE

Let Z(t) be an N.R.Z. signal [5], approximately band-

limited on [¡!0; !0[, and ~h a sum of periodic clock

changes. The latter is a special case of linear periodic

time-varying ¯lters [6]. ~h is de¯ned then by:

Ht(!) = e¡i!® sin(2!0t) + ei!0te¡i!¯ sin(!0t) (13)



The computation of the coe±cients Ãk(!) gives:

Ãk(!) =
1 + (¡1)k

2
Jk=2(®!) + Jk¡1(¯!) (14)

where Jk(!) is the k'th order Bessel function. We take

® = 0:5, ¯ = 0:5, !0 = 20¼. In ¯gure 3, we represent

the N.R.Z. signal at the input of the LPTV ¯lter.
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Figure 3, Original signal

Figure 4 depicts the signal observed at the output of ~h.
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Figure 4, Observed signal

The signal reconstruction presented in ¯gure 4 have

been obtained with a low-pass ¯lter. The ¯gures illus-

trate the e±ciency of the scrambling in the sense that

the information is irretrievable when a simple low pass

¯lter is used.
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Figure 4, Low pass ¯ltering

Figure 5 shows the signal reconstruction emanating

from the optimal time-invariant ¯lter. Even it repre-

sents a signi¯cant improvement, the bit stream may

not be determined without error.
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Figure 5, Optimal invariant-time ¯ltering

Figure 6 presents the reconstruction obtained using the

time-varying ¯ltering given by equation (11) for l =

0. A simple bit detection allows perfect reconstruction

when no noise is present.
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Figure 6, Optimal time-varying ¯ltering

Figure 7 shows the bit error ratio (BER) in presence

of Gaussian white additive noise, where the signal-to-

noise rate (SNR) is calculated in the frequency range

[¡!0; !0[. We compare the performance of the low-

pass ¯lter (. . .), the optimal time-invariant ¯lter (- -

-) and the optimal time varying-¯lter (|). It is easy to

see that the time-varying ¯lter ensures adequate noise

performance.
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Figure 7, BER of reconstruction schemes

5. CONCLUSION

In this article we have presented a method of perfect

linear reconstruction of a stationary process subjected

to a linear periodic time-varying ¯lter. We showed, in

particular, that the reconstruction was possible even

with overlapping spectral components. Finally, this

was veri¯ed by a simulation example and we indicated

the resistance of this system to the presence of additive

noise.
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