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ABSTRACT

The potentials of pilot-symbol-aided channel estimation in

two dimensions are explored. In order to procure this goal,

the discrete shift-variant 2-D Wiener �lter is derived and ana-
lyzed given an arbitrary sampling grid, an arbitrary (but pos-

sibly optimized) selection of observations, and the possibility

of model mismatch. Filtering in two dimensions is revealed

to outperform �ltering in just one dimension with respect to

overhead and mean-square error performance. However, two

cascaded orthogonal 1-D �lters are simpler to implement and
shown to be virtually as good as true 2-D �lters.

1 INTRODUCTION

A
CCORDING to the sampling theorem, any band-
limited 1-D stochastic process or deterministic sig-

nal is uniquely representable by samples taken at least
at the Nyquist rate. If the process is observed in noise,
however, a perfect reconstruction is not possible. The
Wiener �lter is the optimum (minimum mean-squared
error) linear �lter/smoother/predictor, if the noise is
additive. The sampling theorem also holds for multi-
dimensional processes and signals [1]. Generalizations of
the Wiener �lter for multiple dimensions exist as well,
both for continuous and discrete signals [2, 3]. Applica-
tions considered so far include image processing, sensor-
array processing, and geophysical applications.

Pilot-symbol-aided channel estimation of time- and/or
frequency-selective channels is another potential applica-
tion. The basic principle of 1-D pilot-symbol-aided chan-
nel estimation is to multiplex pilot (training) symbols
known to the receiver into the data stream [4, 5]. Hence,
the receiver is able to estimate the process (the chan-
nel) at any time given the observations at the pilot loca-
tions, assuming the pilot density is su�cient w.r.t. the
channel bandwidth. 1-D pilot-symbol-aided channel es-
timation is well understood; di�erent �lters have been
investigated [4, 5, 6, 7].

When the channel is probed simultaneously in both time
and frequency domains, as proposed by the �rst author,
the overhead of pilot symbols can be reduced signi�-
cantly [8]. This scheme is particularly attractive for
multi-carrier modulation such as Orthogonal Frequency-
Division Multiplexing (OFDM) [8, 9]. Applications in-

clude the upcoming European Terrestrial Digital Video
Broadcasting and Digital Audio Broadcasting standards,
mobile radio, and line modems. However so far, to our
best knowledge, only �ltering with two cascaded orthog-
onal 1-D �lters was studied for this particular applica-
tion, referred to as 2� 1-D �ltering. In this paper, we
explore the potentials of pilot-symbol-aided channel es-
timation in two dimensions.

2 THE 2-D WIENER FILTER

The formulation of the 2-D discrete minimum mean-
square error (MMSE) estimation problem and its solu-
tion is as follows [3]. Assume it is of interest to esti-
mate a wide-sense stationary (WSS) 2-D stochastic pro-
cess h(k; l) 2 IC disturbed by a WSS additive discrete
noise process n(k; l) 2 IC, where 0 � k � K � 1 and
0 � l � L � 1 are the two indices of the process (e.g.,
time/frequency indices for the example of channel esti-
mation) andK �L is the arbitrary (�nite or in�nite) block
size. Hence, the received bisequence is

r(k; l) = h(k; l)+n(k; l); 8 0 � k � K�1; 0 � l � L�1:
(1)

Assume further that r(k; l) 2 IC is observed only at sam-
ple locations (pilot locations) P. The corresponding in-
dices are denoted as k0 and l0, respectively, where again
0 � k0 � K � 1 and 0 � l0 � L � 1. The number of ob-
servations (later: pilot symbols) is Ngrid = jjPjj � K �L.
The estimator is chosen to be discrete, linear, and gen-
erally shift-variant:

ĥ(k; l) =
X

fk0;l0g2P

w(k; l; k0; l0) r(k0; l0); (2)

where ĥ(k; l) 2 IC is the estimated bisequence and
w(k; l; k0; l0) 2 IC is the shift-variant impulse response of
the estimator or �lter. The optimal �lter order, i.e. the
number of �lter coe�cients, is Ntap = Ngrid; a simpli�-
cation is introduced in Section 5. An example is shown
in Fig. 1 illustrating the three special cases of predic-
tion, �ltering and smoothing w.r.t. the actual location(s)
fk; lg given a sampling grid P.
The mean square error is de�ned as

J(w(k; l)) = E[jh(k; l)� ĥ(k; l)j2]; (3)



prediction filtering smoothing

auto-covariance

cross-covariance

Distances needed for computation of:

k

l K = 16

L = 13

k = 12

l = 6

0

0

K-1

L-1

data-symbol

pilot-symbol

f

t

N    = 4tap

N     = 17grid

Figure 1: Random sampling grid illustrating prediction,
�ltering and smoothing, and illustrating the computa-
tion of cross- and auto-covariances.

where E[:] denotes the expectation and w is the Ntap

by 1 �lter coe�cient vector. The optimal �lter in the
sense of minimizing (3), i.e. the MMSE estimator or 2-
D Wiener �lter, is obtained by applying the orthogonal
projection theorem [3]:

E[(h(k; l)� ĥ(k; l)) � r�(k00; l00)] = 0

8 0 � k00 � K � 1; 0 � l00 � L � 1; (4)

where ()� denotes the complex conjugate. Although (4)
holds for all fk00; l00g, in Section 6.2 fk00; l00g are from
the pilot grid P. We assume that the Wiener �lter
is physically realizable, i.e., the coe�cients w(k; l; k0; l0)
exist. The optimum �lter coe�cients are denoted as
wo(k; l; k

0; l0). After basic operations, the 2-D discrete
Wiener-Hopf equation is obtained:

E[h(k; l) r�(k00; l00)] =
X

fk0;l0g2P

wo(k; l; k
0; l0)

�E[r(k0; l0) r�(k00; l00)]; 8fk00; l00g 2 P: (5)

Let
�(k � k00; l � l00) = E[h(k; l) r�(k00; l00)] (6)

denote the cross-covariance and

�(k0 � k00; l0 � l00) = E[r(k0; l0) r�(k00; l00)] (7)

denote the auto-covariance. Inserting (6) and (7) into
(5) yields

�
T (k; l) = wT

o (k; l) �; (8)

where � is an Ntap by Ntap auto-covariance matrix and

�(k; l) is an Ntap by 1 cross-covariance vector and ()T

denotes the transpose. Hence the optimal solution (if
existent) is

wT
0 (k; l) = �T (k; l) ��1: (9)

3 PERFORMANCE

ANALYSIS

For a given set of �lter coe�cients w, (2) can be written
in matrix form as

ĥ(k; l) = wT (k; l) r: (10)

Substitution into (3) yields the MSE [3]

J(w(k; l)) = �2h � �T (k; l)w�(k; l)�wT (k; l) ��(k; l)

+wT (k; l) �w�(k; l); J(:) 2 IR; (11)

where ()H is the hermitian operator (conjugate trans-
pose). This equation is valid for any FIR �lter w, i.e.,
also for model mismatch.

If the cross- and auto-covariance functions are known,
the MMSE is obtained by inserting (9) into (11):

Jo(k; l) = �2h � �T (k; l)��1��(k; l): (12)

4 GENERALIZED TWO{DIM.

SAMPLING THEOREM

It is interesting to recall that the multi-dimensional
Wiener theory is a generalization of the sampling the-
orem, as pointed out in [7] for the 1-D case. The
multi-dimensional Wiener �lter is the optimal predic-
tor/�lter/smoother in the presence of additive noise, for
�nite or in�nite (bi)sequences when given an arbitrary
sampling grid P. It provides a compact tool to analyze
the MSE including model mismatch and aliasing e�ects.

Equations (9) and (12) (respectively and (11)) manifest
the generalized 2-D sampling theorem. The conventional
2-D sampling theorem is given by the special case where
J(w(k; l)) = 0, 8 fk; lg. This implies that the bisequence
h(k; l) is bandlimited in both dimensions, sampling is
su�cient in both dimensions (according to the known
bandwidths of h), and the additive noise process n(k; l)
is zero.

5 SIMPLIFICATIONS

The 2-DWiener �lter exists i� � is invertible. Coe�cient
sets can be pre-computed and stored. So far, the num-
ber of coe�cients per set, Ntap, was assumed to be equal
to the number of observations, Ngrid. The complexity
can be signi�cantly reduced, however, if only a subset
T (k; l) 2 P of Ntap < Ngrid observations is chosen,
where Ntap = jjT (k; l)jj. The performance/complexity
trade-o� is adjustable. Suitable selection criteria are:
1.) Optimize T (k; l) for each location fk; lg so that
J(w(k; l)) is minimized. This optimum rule is rather

complex for practical block sizes:
�
Ngrid

Ntap

�
possibilities

must be checked. 2.) Search the Ntap sample locations
fk0; l0g \nearest" to the actual location fk; lg. \Nearest"



could be w.r.t. A.) the sum of horizontal and vertical
distances, jk�k0j+jl�l0j (suitable if the normalized chan-
nel bandwidths are similar in both dimensions; using the

Euclidean distance
p
(k � k0)2 + (l � l0)2 appeared to be

worse), or B.) some form of \weighted" distances, such
as jk � k0jfDmax

Ts + jl � l0j�max�F for the example in
Section 6.2.

6 EXAMPLE

6.1 Channel Model

A wide-sense stationary uncorrelated scattering (WSS-
US) mobile radio channel model can be expressed as

h(k; l) = lim
N!1

1p
N

NX

n=1

ej(�n+2�fDnTs�k+2��n�F �l);

(13)
with E[jh(k; l)j2] = �2h = 1 [10]. N echoes superpose
incoherently. Each path is characterized by a random
phase �n, a random Doppler shift fDn

and a random de-
lay �n, where 1 � n � N . The corresponding joint prob-
ability density function p�;fD;� (�; fD; � ) is needed to ran-
domly choose �n, fDn

and �n. The symbol duration, Ts,
is the spacing in the time domain and the carrier spacing,
�F , is the spacing in the frequency domain. fDmax

Ts
and �max�F are the normalized one-sided channel band-
widths in time and frequency domains, respectively.

Due to the assumption of uncorrelated scattering and for
independent phases

p�;fD;� (�; fD; � ) = p�(�)pfD (fD)p� (� ); (14)

where pfD (fD) and p� (� ) are proportional to the so
called Doppler power spectrum and delay power spec-
trum, respectively [10].

Example: Consider a uniform Doppler power spec-
trum (with fDmax

being the one-sided maximumDoppler
frequency) and a uniform delay power spectrum (with
�max being the one-sided maximumecho delay). Assume
the received signal r(k; l) is observed in white Gaussian
noise with average SNR = Es=N0, where Es is the aver-
age energy per symbol (data and pilot symbols are here
assumed to be transmitted with the same energy) and
N0 is the one-sided noise spectral density. Then, the
cross-covariance is

��t;�f (k � k00; l � l00) = ��t(k � k00) � ��f (l � l00)

��t(k � k00) = si(2�fDmax
Ts(k � k00))

��f (l � l00) = si(2��max�F (l � l00)) (15)

and the auto-covariance is

�(k0 � k00; l0 � l00) =
N0

Es

�(k0 � k00; l0 � l00)

+��t(k
0 � k00) � ��f (l0 � l00): (16)

6.2 Pilot-Aided Channel Estimation

Let us denote the spacing between pilot symbols in the
time domain by NK and in the frequency domain by NL.
Given the normalized channel bandwidths fDmax

Ts and
�max�F , the sampling theorem states that

fDmax
Ts �NK � 1=2 and �max�F �NL � 1=2: (17)

We de�ne a \balanced design" as fDmax
Ts � NK �

�max�F � NL. A \rule of thumb" is 2� oversampling
to achieve reasonable complexity (�lter length) and per-
formance, i.e.,

fDmax
Ts �NK � 1=4 and �max�F �NL � 1=4: (18)

Example: Consider fDmax
= 320 Hz (e.g., v =

192 km/h @ f0 = 1:8 GHz) and �max = 10�s (one-sided,
i.e., the maximum delay is 20�s) as worst-case parame-
ters of a typical land mobile radio system.

Given these constraints, a balanced design with 2x over-
sampling applied to an OFDM system is as follows:

fDmax
TsNK = 320 Hz � 260�s � 3 = 1=4

�max�FNL = 10�s � 4:1667 kHz � 6 = 1=4 (19)

where NK = 3, NL = 6, T = Ts � � = 260 �s�20 �s
= 240 �s is the useful symbol duration, � = 2�max =
20 �s is the guard interval, and 1=T = �F = 4:1667 kHz
is the carrier spacing.

This scheme was investigated for short blocks with K =
58 and L = 115. A rectangular sampling grid with
NK = 3 and NL = 6 consists of Ngrid = 400 pilot sym-
bols; the overhead (pilot density) is 1=(NKNL) excluding
edge e�ects. Other grids were examined as well. Perfor-
mance criterion is the MSE averaged over all symbols;
edge e�ects are hence included. Perfect knowledge of
the covariances is assumed to avoid any spurious e�ects.
Analytical results were veri�ed by simulations.

1-D channel estimation serves as a benchmark. We
looked at �ltering in the frequency domain; the over-
head is 1=NL excluding edge e�ects. The results are
reported in Fig. 2 given various numbers of coe�cients,
Ntap. About �ve �lter coe�cients are su�cient.

The second strategy under investigation is 2� 1-D chan-
nel estimation [8]: Filtering in the frequency domain is
followed by �ltering in the time domain, both using 1-
D Wiener �lters. The actual order of �ltering (time or
frequency �rst) is arbitrary due to linearity. The cor-
responding results given a rectangular grid are plotted
in Fig. 3. The MSE is better than for 1-D �ltering, al-
though the total pilot overhead is reduced by a factor of
three.

Finally, 2-D channel estimation given the rectangular
grid is investigated. 10, 25 and 100 coe�cients were
chosen: seen from the standpoint of complexity, 10 taps



corresponds to 2 � 5 taps for 2� 1-D, 25 taps corre-
sponds to 5 � 5 taps, and 100 taps serves as a bench-
mark. The results are reported in Fig. 4. Since Ntap <

Ngrid and
�
Ngrid

Ntap

�
is very large, the weighted distance

jk � k0jfDmax
Ts + jl � l0j�max�F was chosen as the fa-

vored selection criteria, see Section 5. IfNtap = 10 = 2�5,
the MSE is similar to the MSE of 2� 1-D �ltering for
practical SNR. If Ntap = 25 = 5 � 5, the MSE of 2-D
�ltering is always better.

7 CONCLUSIONS

The discrete shift-variant 2-D Wiener �lter was derived
and analyzed given an arbitrary sampling grid P and
including model mismatch. To reduce complexity, Ntap

can be made smaller than Ngrid. If so, the set of obser-
vations T (k; l) should be optimally chosen from P. The
MSE was expressed in closed form; the analysis is valid
for any FIR �lter. A generalized 2-D sampling theorem
was proposed.

Application was presented for pilot-symbol-aided chan-
nel estimation. 2-D Wiener �ltering was compared with
2� 1-D Wiener �ltering and 1-D Wiener �ltering. Fil-
tering in two dimensions was shown to outperform �lter-
ing in just one dimension with respect to overhead and
mean-square error performance. However, for a similar
computational e�ort, the performance of 2� 1-D Wiener
�ltering is similar to 2-D Wiener �ltering.
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Figure 2: Average MSE versus SNR for 1-D Wiener �l-
tering.

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
Es/N0, dB

10
-4

10
-3

10
-2

10
-1

10
0

M
S

E

2 x 3 taps, simulation
2 x 5 taps, simulation
2 x 7 taps, simulation
2 x 9 taps, simulation

Figure 3: Average MSE versus SNR for 2� 1-D Wiener
�ltering given a rectangular grid.
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Figure 4: Average MSE versus SNR for 2-D Wiener �l-
tering given a rectangular grid.


