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ABSTRACT

In the literature of blind equalization, algorithms devel-
oped for equalizing an SISO or SIMO channel fail some-
times when the channel condition is poor. We derive blind
equalization algorithms from blind separation algorithms to
equalize the SISO channel with fractionally sampling. The
approach is also applied to equalize SIMO or MIMO chan-
nels. For switching channels, we use an updating rule to
tune the learning rate of on-line algorithms automatically
to follow the channel change. The idea is applicable to im-
prove all blind equalization algorithms to equalize switching
channels.

1. INTRODUCTION

Most of the blind equalization algorithms such as the
super-exponential algorithms in [12] fail to equalize an ill-
conditioned SISO channel.

When the fractional samples of the SISO channel output
are available or the problem is to equalize an SIMO channel,
we can �rst use the least-squares approach [13] to estimate
the channel impulse responses, then use pseudo-inverse to
recover the input sequence. This method can equalize some
ill-conditioned channels. But it is not an on-line algorithm
and may also fail sometimes.
The idea of the super-exponential method is to design

a non-linear operation in the combined channel-equalizer
domain which squeezes the combined system towards a �-
function, then implement this operation in the equalizer
domain. The method fails for some ill-conditioned SISO
channels because the implementation is not perfect. One
class of on-line algorithms for equalizing SIMO channels
was proposed in [8] where the super-exponential method in
[12] was perfectly implemented by the fractionally-spaced
equalizer.
In this paper, we shall use a di�erent approach to tackle

the problem of equalizing SIMO channels. By reformulat-
ing the model for an SIMO channel output, we can use any
blind separation algorithm based on independent compo-
nent analysis (ICA) [7] for blind equalization. Especially, we
can use those algorithms in [2, 3, 6] with equivariant prop-
erty in order to equalize ill-conditioned channels. Therefore,
from the blind separation algorithms, we obtain a class of
on-line algorithms for equalizing SIMO channels or SISO
channels with fractionally-sampled channel outputs.

The performance of the on-line blind equalization algo-
rithms depends on the learning rate. The idea of learning of
learning rate developed for neural networks [1, 4, 11] can be
used to improve the blind equalization algorithms especially
for switching channel or non-stationary channel.
The contents of this paper are organized in the following

way. The model and the problem are described in Section 2.
The blind equalization algorithms are given in Section 3:
the algorithm based on ICA in Section 3.1 and the algo-
rithm for learning rate in Section 3.2. To demonstrate the
e�ectiveness of our algorithms, we show some simulation
results in Section 4.

2. CHANNEL MODEL

Consider the following SISO channel with discrete time in-
put and continuous time output:

x(t) =
X
kT�t

s(k)h(t� kT ) + n(t) (1)

where fs(k)g is an input sequence, T the symbol interval,
n(�) the additive noise, and h(�) the channel impulse re-
sponse function. Assume h(t) = 0 if t =2 [0; LT ]. When
the sampling rate is M times faster than the baud rate, the
model (1) becomes an SIMO system:

xm(k) =

LX
l=0

hm(l)s(k � l) + nm(k); (2)

k = 1; � � � ;N;m = 1; � � � ;M;

where xm(k) is the output of the m-th channel, N the data
length, nm(k) a zero mean additive noise, and

hm(l) = h(lT +
m

M
T ); l = 0; � � � ; L

are the impulse responses of the m-th channel.
Our problem is to equalize the SISO channel (1) with

fractionally sampled outputs or the SIMO channel (3).

3. BLIND EQUALIZATION

3.1. Equalization via ICA

To recover the input only from the outputs of the SIMO sys-
tem (3), we �rst reformulate this system as a linear mixture
model

x(k) = As(k) +n(k)



and then apply the following algorithm for de-mixing:

W k+1 = (1 + �)W k � �f(y
k
)y

T

k
W k (3)

where � is a learning rate and

f(y) = (f (y1); � � � ; f(yn))
T

for some non-linear function f(�).
This algorithm has been derived in [2] by minimizing the

mutual information of the outputs using the natural gradi-
ent descent method. The algorithms of this type can also be
derived by other approaches such as info-max[5] and max-
imum likelihood. Di�erent approaches may give di�erent
function forms for f(�) such as instantaneous functions in
[3] and adaptive ones in [15].
De�ne h

l
= (h1(l); � � � ; hM (l))T , l = 0; 1; � � � ; L, and a

p� (p + L) block matrix Hp:2
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The system (3) can be written as the following mixture
model:

uk =Hpsk +nk (4)

where

uk = [xTk ; � � � ;x
T

p+k�1]
T ,

xk = [x1(k); � � � ; xM (k)]T ,

s
k
= [s(k � L); � � � ; s(p + k � 1)]T ,

and nk is similarly de�ned as uk but from the noise term
in (3).
NoteHp is of pM�(p+L). When p = L and M = 2, the

Hp is a square matrix. This corresponds to the sampling
interval T

2
which is popular in communication applications.

Assume p � L

M�1
, Hp has a full column rank, and the

input is an independent non-Gaussian sequence. This is the
condition for using the blind separation algorithms for blind
equalization. Let Hm(z) =

P
L

k=1
hm(k)z

�k be the trans-
fer function of the m-th sub-channel. Under the condition
p(M � 1) � L, Hp has a full column rank if and only if the
following zero condition [9] holds:

hm(0) 6= 0 for some 1 � m � M ,
hm(L) 6= 0 for some 1 � m � M , and

fHm(z)g
M

0 have no common zeros.

When p > L

M�1
, the output dimension pM of the system

(4) is greater than its input dimension p + L. To reduce
the dimensionality and preserve dimensionality of the signal
space at the same time, we use a (p + L) � pM whitening
matrix V k to transform uk to vk. V k is updated by the
following whitening algorithm:

V k+1 = (1 + �)V k � �vkv
T

k V k (5)

where � is a learning rate.
Considering the system (4) as a mixture model with p+L

independent sources, we apply the algorithm (3) to update

the matrix W k and recover the source vector by a linear
transform: bs

k
=W kV kuk:

Since both s
k
and Hp are unknown, we cannot obtain the

exact inverse of Hp. However, we can use any blind sepa-
ration algorithm based on ICA to obtain

W1 = DP (V1Hp)
�1
;

a scaled and permuted inverse of V1Hp, where D is a di-
agonal matrix with non-zero diagonal elements and P is a
permutation matrix. With W1 and V1, we achieve the
equalization and obtain a possibly delayed input in each di-
mension of the vector bs

k
. This algorithm is called blind sep-

aration for blind equalization (BSBE). When the channel is
ill-conditioned, Hp is nearly singular. Taking advantage of
the equivariant property of those algorithms in [1, 3, 6], we
can still equalize ill-conditioned channels by BSBE.

Note the above approach can be applied to develop algo-
rithms to equalize an MIMO channel [14].

3.2. Learning of learning rate

The performance of the algorithm (3) depends on the learn-
ing rate. The following equation for the learning rate is
proposed in [4] for learning realizable dichotomies:

�k+1 = �k + ��k(�f (xk;yk) � �k) (6)

where �; � > 0 and f(xk; yk) is an error function. When
the error signal f(xk; yk) is small, the dynamics of �k is
close to the dynamical system

d�

dt
= ���2

which has a solution �(t) = 1

�t
. This corresponds to the

annealing rate �k = 1

�k
. However, when the error signal

f(xk;yk) increases, the learning rate �k also increases. The
equalizer is automatically tuned by increase the learning
rate to adapt itself to the changing environment.

This scheme is further developed in [1] and [11] for neural
learning and applied in blind separation to extract sources
from non-stationary mixtures caused by a switching mix-
ing matrix [11]. We can also apply this scheme to all on-
line blind equalization algorithms especially for equalizing
a switching channel.

4. SIMULATION

Consider the blind equalization of FIR �lters with the fol-
lowing impulse response functions respectively:

(A) h = [ 0:4 1 � 0:7 0:6 0:3 � 0:4 0:1],

(B1) h1 = [ �0:0008; 0:03; � 0:0036; � 0:0497;
0:0562; 0:3193; 0:4868; 0:3599;
0:0779; � 0:0708; � 0:0260; 0:0378],

(B2)

�
h2
h1

�
where h1 is the same as (B1) and



h2 = [ �0:0166; 0:0189; 0:0226; � 0:0354;
�0:0231; 0:1799; 0:4339; 0:4596;
0:2185; � 0:0248; � 0:0639; 0:0150].

(B1) and (B2) are the impulse responses of the same
channel with the baud rate and twice the baud rate as the
sampling rate respectively.

The channel (A) was used in [12] to demonstrate the ef-
fectiveness of the super-exponential methods by which a
family of blind equalization algorithms were derived. Under
certain conditions, these algorithms are super-exponentially
fast. We tested one algorithm in this family, namely the al-
gorithm (60)-(61) in [12] (to be called SEBE in this paper),
to equalize the channels (A) and (B1). It is shown in Fig-
ure 1 that the SEBE succeeds in equalizing the channels
(A) but failed to equalize the channel (B1). The reason is
the poor channel condition of (B1).
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Figure 1. Applying the SEBE for equalizing (A)

and (B1)

The zero distributions of h, h1 and h2 are plotted in Fig-
ure 2 to illustrate the channel conditions of (A) and (B1).
Needless to say that the channel (B1) and each sub-channel
of the channel (B2) are ill-conditioned since both h1 and
h2 have zeros on unit circle.

For the channel (B2), although each sub-channel is ill-
conditioned, we can �rst use the least-squares approach in
[13] to estimate the channel impulse responses, and then
use pseudo-inverse to estimate the input by the following:bs
k
= (cHp)

+uk. We call this algorithm the LSBE.

We test the both BSBE and LSBE for channel (B2). In
the BSBE algorithm, we choose M = 2, p = 11, and f(y) =
y3. The outputs of BSBE and LSBE are shown in Figure 3.
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Figure 2. The zero distributions of h, h1 and h2
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Figure 3. Comparing BSBE to LSBE for equalizing

(B2)

The noise in the observation is a Gaussian noise with
zero mean and variance �2. The input to the unknown
channel is an independent binary sequence. When � =
0:0005, after using 2000 symbols to equalize the channel we
transmit 10000 symbols, count bit-error-rate (BER), and
obtain BER=0.03% for BSBE and BER=23% for LSBE.
This shows that BSBE equalizer performs better than LSBE
equalizer at high SNR.
When the SNR is relatively low, the BSBE breaks down.

This weakness is inherited from the noise problem in blind
separation. Almost all blind separation algorithms are vul-
nerable to the noise added to the mixture. Nevertheless,
since in many communication systems the SNR at the chan-
nel output is quite high and the dominant distortion is the
ISI[10], the BSBE algorithm is still useful especially for
equalizing ill-conditioned channels.
To demonstrate the e�ectiveness of the learning of learn-

ing rate, we consider the blind equalization of a switching
channel in Figure 4. The two impulse response functions
are b1 = [1; �5=2; �3=2] and b2 = [1; 5=3; �2=3]. fc(k)g



is the equalizer and the channel observation x(k) switches
between two channels. We test the SEBE algorithm (60)-
(61) in [12] combined with the learning of learning rate to
equalize this channel. Instead of using the learning rate
�k = 1

k
or a constant learning rate, we use the following

scheme to update �k:

�k+1 = �k + ��k(�jy
2(k) � 1j � �k)

It is shown in Figure 5 that the equalizer adapts itself to
the changing environment by using the above learning rule
for the learning rate.
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Figure 4. A switching channel

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−6

−4

−2

0

2

4

6

Iteration

in
pu

t t
o 

eq
ua

liz
er

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−10

−5

0

5

10

Iteration

ou
tp

ut
 o

f e
qu

al
iz

er

Figure 5. The equalization of a switching channel

5. CONCLUSIONS

We propose new on-line algorithms to equalize an SIMO
channel or an SISO channel with fractionally sampling. The
new algorithms have a merit to equalize an ill-conditioned
channel because of the equivariant property inherited from
the blind separation algorithms. This approach can be ex-
tended for blind equalization of MIMO channels. One sim-
ulation shows that the new algorithms perform better than
the algorithm based on blind identi�cation [13] and pseudo-
inverse.
The idea of learning of learning rate can be applied to

design algorithms for tuning blind equalization algorithms
automatically in order to equalize a switching channel.
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