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ABSTRACT

Constant Modulus algorithms based on a determinis-
tic error criterion are presented. Soft constraint satis-
faction methods yield a general family of blind equal-
ization algorithms employing nonlinear functions of
the equalizer output which must satisfy certain con-
ditions. The algorithms are also extended to cover
fractionally-spaced blind equalization. A normalization
factor which appears as a result of the deterministic for-
mulation of the problem helps the blind equalizer im-
prove its performance. Also, the family supports a wide
range of nonlinear functions. Extensive simulations are
presented to reveal convergence characteristics which
also include signals from the Signal Processing Infor-
mation Base (SPIB).

1. INTRODUCTION

Blind equalization has been the focus of extensive re-
search e�ort [1, 2, 3] because the need to transmit a
training sequence so that the equalizer can remove the
e�ect of Inter-Symbol-Interference (ISI). Unless com-
batted, ISI causes decision errors in receivers. So far
numerous problems, the most serious of which is the ex-
istence of undesirable local minima [4], have impeded
the exploitation of blind equalizers in many commer-
cial systems. Recently, it has been shown that [5] glob-

ally convergent blind equalizers can be built within the
fractionally-spaced con�guration. However, important
aspects such as the numerical conditioning for various
nonlinear functions of the output and stability associ-
ated with the power level of the input require further
investigation.

In this paper, we develop a general family of blind
equalization algorithms which is less sensitive to input
power, local variations at the channel output and has

exibility in choosing the nonlinear function. Figure 1
shows a general blind equalizer. We assume that the
rate of transmitted symbols, sk, is T . If p = 1, then
the equalizer is single channel and termed \T -spaced"

since the channel output is sampled at the symbol rate.
If p � 2, we have a fractionally-spaced equalizer which
corresponds to sampling the channel output at a rate
T=p. In general, it is necessary to oversample the chan-
nel output at a frequency greater than the bandwidth
of the transmit pulses, which is generally higher than
the Nyquist rate due to pulse shaping, so that undesir-
able e�ects in T -sampled equalization do not exist.

2. DETERMINISTIC OPTIMIZATION

CRITERION

Blind equalization algorithms can be derived from a
deterministic optimization criterion. Consider the fol-
lowing optimization problem, also known as the prin-
ciple of minimum disturbance [6]: Determine the tap-
weight vector of dimension N at time k, Wk, given
the tap-input vectors Xk, Xk�1, : : : ; where XH

k
=

[xk : : : xk�N+1], and desired responses dk; dk�1; : : : ;
so as to minimize the squared Euclidean norm of the
change in the tap-weight vector Wk,

�Wk = Wk �Wk�1 (1)

subject to the constraints

XH

k Wk = dk

XH

k�1Wk = dk�1

...

XH

k�m+1Wk = dk�m+1; (2)

where m < N and (:)H denotes Hermitian transpose.
If the training sequence is known to the receiver, the so-
lution of the optimization problem leads to the Under-
determined Recursive Least-Squares (URLS) algorithm
[7], also known as the A�ne Projection algorithm. In
blind equalization the training sequence is not known
to the receiver, and hence the desired response must
be obtained from pertinent measurements in the re-
ceiver. In this paper, we propose the following choice



for dk : : : dk�m+1:

dk =  (R; y[k�1];k)

...

dk�m+1 =  (R; y[k�1];k�m+1) (3)

where y[i];j = WH

i
Xj ,  (:) is a nonlinear function

which satis�es certain conditions and R is a con-
stant chosen appropriately for the particular modula-
tion scheme employed in the transmission. In the se-
quel we use yk to denote y[k�1];k. The solution of the
above optimization problem via Lagrange multipliers
yields

Wk = Wk�1 +Xm;k(X
H

m;k
Xm;k)

�1Ek; (4)

where the m� 1 error vector Ek and the N �m matrix
(vector aggregate of Xk) Xm;k are

Xm;k

4

= [Xk Xk�1 � � � Xk�m+1]; (5)

Ek
4

= Dk �XH

m;k
Wk�1; (6)

Dk

4

=
�
 (R; y[k�1];k) � � �  (R; y[k�1];k�m+1)

�H
: (7)

A stepsize is also introduced to maintain the stability
of the algorithm. Hence, we have the update

Wk = Wk�1 + �Xm;k(X
H

m;kXm;k)
�1Ek: (8)

A similar formulation has also appeared in [3] where
only the signum function is considered in D and
the resulting algorithm is interpreted as a projec-
tion onto a circle. The family of functions which
satisfy the requirements for convergence constitutes
the soft-constraint satisfaction algorithms because at
each iteration the constraints in (2) are dynamically
changed. Some special cases may be identi�ed: For
m = 1, R = E

�
jskj

2p
	
=E fjskj

pg and  (R; yk) =

yk
�
Rjykj

(p�2) � jykj
(2p�2) + 1

�
we can identify the nor-

malized version of the Godard algorithm [1]. For
m = 1, R = E

�
jskj

2
	
=E fjskjg and  (R; yk) =

R sgn(yk), we have the normalized version of the
Sato algorithm [2]. New nonlinear functions can also
be introduced. For example, when m = 1, R =
E
�
jskj

3
	
=E

�
jskj

2
	
and  (R; yk) = (2 � jykj=R)yk,

the SCS-1 algorithm in [8] results. Another choice
could be R1=2 = E

�
jskj

2
	
=E

�
jskj

3=2
	
and  (R; yk) =

R1=2sgn(yk)jykj
1=2, which will be termed as the Square-

root SCS (SqSCS) algorithm.
The methodology in this section is reminiscent of

Bussgang techniques for blind equalization, for which
the memoryless nonlinear function  (:) is thought of
estimating the conditional mean E fskjykg [9]. If a de-
terministic formulation of the problem is adopted, the

factor (XH

m;k
Xm;k)

�1 can signi�cantly a�ect the per-
formance as shown in [8]. The simulations presented in
this paper also illustrate this fact.

3. FRACTIONALLY-SPACED EQUALIZERS

The concept of soft constrained satisfaction can be ex-
tended to fractionally-spaced equalizers. The Single-
Input-Multiple-Output (SIMO) system of Figure 1 rep-
resents a fractionally sampled equalizer. The opti-
mization problem of the previous section can be ex-
tended to cover the multichannel setup. In this case, let

WH

k
=

h
W

(1)H

k
� � �W

(p)H

k

i
, XH

k
=

h
X

(1)H

k
� � �X

(p)H

k

i

and yk = XH

k
Wk�1. The nonlinear functions can be

used without any alteration.

4. SIMULATIONS

The proposed algorithms have been tested on the arti-
�cially created data and real data sets which are being
placed in the Signal Processing Information Base. In
particular, the simulations with the Godard (p = 2),
normalized Godard (p = 2), normalized Sato, SCS-
1 and SqSCS algorithms with m = 1 have been pre-
sented. The step-sizes of all algorithms have been cho-
sen to give the fastest convergence in each case.

4.1. Arti�cally Created Data Sets

We have used a 2-channel SIMO structure to simulate a
fractionally-spaced blind equalizer which has an over-
sampling factor of 2. BPSK modulation technique is
assumed.
Experiment I: The mixed-phase subchannels in the
upper and lower branches of the communication chan-
nel are respectively chosen to be 0.242, -0.204, -0.159,
0.142, 0.157 and 0.216, 0.508, 0.848, 0.530, 0.311. The
equalizer has 4 taps in each subchannel. All algorithms
start from the same arbitrary initial condition. The
signal-to-noise-ratio in each subchannel is set to 10 dB
and the results of 20 independent trials are averaged to
obtain the Open-Eye Measure (OEM) which is de�ned
as

OEM(k)
4

=
kTkk1 � kTkk1

kTkk1
(9)

where Tk represents the combined channel and equal-
izer. If OEM(k) < 0dB then the eye is open and ISI has
no e�ect in the decision process. If OEM(k) > 0dB, the
eye is closed and hence the ISI left after equalization
will cause decision errors. The evolution of the OEMs
for the proposed algorithms is shown in Figure 2 .
Experiment II: In this experiment a common zero is
assumed between the channels. The upper and lower



subchannels are assumed to be 0.197, 0.586, 0.960,
0.705, 0.217 and 0.179, 0.422, 0.706, 0.440, 0.2588 re-
spectively. There are common zeros at 1:5e�j0:7�. The
equalizer has 4 taps in each subchannel. Center-tap
initialization is used in each subchannel. The results of
20 independent trials are averaged to obtain the OEM
curves presented in Figure 3.

When common zeros exist between channels, the
problem is equivalent to T -spaced equalization of the
common transfer function [10]. Hence, the Godard al-
gorithm may fail to converge to the global optimum
which is the possible cause of slow convergence of this
case in the simulations.

The experiments show that SCS algorithms perform
better than the unnormalized algorithms. Also a dis-
continuous nonlinearity as in the Sato or Normalized
Sato algorithm is not desirable. It can also be con-
cluded that the performance is unlikely to depend on
the choice of the nonlinear function. Therefore, the one
with better numerical properties could be chosen.

4.2. SPIB Signals

In this part, the algorithms are tested with the real
data sets obtained from the SPIB database de�ned in
the appendix of [11]. A V.29 constellation modem se-
quence is chosen. The channel output is sampled twice
faster than the symbol period. The power spectral den-
sity and constellation of the channel output are shown
in Figure 4. The equalizer has 8 taps in each sub-
channel. The constellations at the equalizer output in
the steady-state for the Godard, Normalized Godard,
SCS-1 and SqSCS algorithms can be seen in Figure 5.
Although some carrier o�set remains in the data set,
all algorithms are able to open the channel eye.

5. CONCLUSIONS

A family of blind equalization algorithms is proposed
for T -spaced and fractionally spaced equalizers. Better
performance in realistic situations, 
exibility in choos-
ing the nonlinear function and less sensitivity to the
input power level are the essential features of the new
family.
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Figure 1: SIMO structure for fractionally-spaced equaliza-
tion.
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Figure 2: OEMs of all algorithms for Experiment I.
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Figure 3: OEMs of all algorithms for Experiment II.
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Figure 4: Characteristics of the SPIB modem channel.
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Figure 5: Output Constellations for the Godard, Normal-
ized Godard, SCS-1 and SqSCS algorithms.


