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ABSTRACT

This paper 1 presents a new signal de-noising algorithm
using wavelets. We have developed a �ltering scheme in the
wavelet domain, that involves selective smoothing at each
scale of the time-frequency plot. The amount of smooth-
ing is controlled by regularizing factors, and gradient-based
switches are used to avoid distortion of signal features. The
algorithm is seen to compare favorably to that of Mallat et
al [5, 6], as it is able to recover both the smooth portions as
well as Brownian texture in the input, from the noisy signal.

1. INTRODUCTION

This paper presents a signal de-noising algorithm based on
the wavelet transform. The classical Wiener-�ltering for de-
noising does not work well in a non-stationary environment.
Wavelets naturally suggest themselves for this purpose due
to their time-frequency localization properties [1]-[3]. Pre-
vious wavelet-based approaches have used statistical tests
that assume the signal to be modeled well by the wavelet
bases (Porat and Friedlander [4]), or have concentrated on
the wavelet transform modulus maxima (Mallat and Hwang
[5] and Mallat and Zhong [6]). Bertrand et al [7] consider
selective reconstructions from some of the wavelet coe�-
cients, and also consider a 'generalized thresholding' of the
coe�cients in a manner that mimics the Wiener �lter. In
Donoho and Johnstone [8] and Donoho [9], a thresholding
rule is developed based on the statistics of the noise process.
Ainsleigh and Chui [10] have developed an FFT- based �l-
tering scheme in the wavelet domain, for removal of impuls-
ive noise.

We have developed a �ltering scheme in the wavelet-
domain, using the entire wavelet transform, and avoiding
manual selection of coe�cients. We apply selective smooth-
ing at each scale of the transform, and then reconstruct the
de-noised version of the signal. The amount of smoothing
is controlled by a regularization factor, and the smooth-
ing is made selective using gradient-based switches so that
important signal features are not destroyed. The selective
smoothing at each scale enables us to obtain good de-noising
even on a signal that has both smooth variations as well as
sharp steps and Brownian texture. Simulation results are
presented to illustrate the e�ciency of our method.

1This work was partially funded by a grant from BRNS, India

2. DESCRIPTION OF THE ALGORITHM

Let fxng be the signal of interest and fyng, the observed
signal, given by yn = xn + wn where fwng is the addit-
ive noise. We do not assume any knowledge regarding the
probability distribution of wn except that wn is zero mean.
Thus, non-stationary noise assumption is permissible. Next,
let c0k = yk, and let c

j

k be the k
th wavelet coe�cient at resol-

ution j, j = 1; : : : ; J ; obtained by passing fyng through the
subband �ltering structure associated with an orthonormal
wavelet. At the lowest resolution J , let the sub-sampled
output of the last low-pass �lter be denoted by fsJk g.
We then apply the following �lter to fcjkg; j = 1; : : : ; J

and fsJkg:
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The de-noised version of the signal is obtained by recon-
struction from the coe�cients fĉjkg and fŝJkg instead of the

original wavelet coe�cients fcjkg and fsJk g. Here fljk;k+1g
are gradient-based switches, de�ned for each j = 1; : : : ; J
by
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tj are some thresholds to be selected. The switches fLJ
k;k+1g

are de�ned analogous to (3), and have a corresponding
threshold TJ . The role of the switches is to avoid destroy-
ing of signal features by recognizing large changes in the
wavelet coe�cient amplitude and keeping them una�ected
by the smoothing. The scalars fhjkg and fHJ

k g are chosen
to minimize the cost function
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J
k�1)

2 (4)

Here f�jg and �J are regularizing terms that control the
amount of smoothing. The above minimization can be
achieved by separately minimizing, for each j = 1; : : : ; J ,
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with respect to fhj
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g, and likewise, minimizing
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with respect to fHJ
k g. This was done by imposing @bj

@h
j

k

= 0

and @BJ

@HJ
k

= 0 for all k. This gives rise to a banded system

of equations in fhj
k
g at each scale j, and likewise in fHJ

k g.

3. HOW THE METHOD WORKS

The wavelet transform can be observed to achieve an e�ect
similar to de-correlation and energy compaction, so that a
typical signal would often have a transform in which the
essential features of the signal are captured in a single coef-
�cient that is markedly di�erent in value from its neighbors
[8]. So, a sudden change in the wavelet coe�cient magnitude
is likely to be a signal feature and not a creation of the noise.
Hence performing the blurring across such a sudden change
would be distorting the signal features. So the switches are
used in (1), (2) and (4) to prevent the blurring in these
cases. The cost function (4) indicates that one is trying to
smooth the signal fcjkg at each scale j by reducing the power
in its gradient. The amount of smoothing is controlled by
the regularization parameter. Separate processing at each
scale leads to �ner control of the overall performance.

4. RESULTS FROM IMPLEMENTATION

Figure 1 shows the signal on which the scheme described
above was tested. Note that it is similar to the one used by
Mallat and Zhong [5] having isolated singularities as well
as Brownian texture. Figure 2 shows the signal with zero
mean Gaussian noise added to it. The algorithm described
above was run on the noisy signal in Figure 2, using the
Daubechies 6-tap wavelet �lter, and the parameters tj and
�j as shown in Table 1.

j 1 2 3 4 5 6 7 8

tj 1.3 1.0 0.9 1.6 2 2 0 0

�j 0.00001 0.01 0.03 5 20 40 10 10

J=8 T 8=0 �8=10

Table 1: Parameters for simulation
with Gaussian noise.

Figure 3 shows the de-noised signal. Note that our al-
gorithm is able to capture both the initial parts of the sig-
nal (consisting of smoother portions with some jumps in
between) as well as the later portions with Brownian tex-
ture. Thus, the controlled smoothing that our algorithm
gives enables it to perform better than any conventional �l-
tering operation. The SNR improvement from 6db to 12.9db
is somewhat better than that obtained by the de-noising al-
gorithm of [5]-[6], ([5] obtains improvement from 6db to
12.1db); but more importantly the reconstruction follows
the transients in the noiseless signal better than in [5], espe-
cially in the portion with Brownian texture. Figure 4 shows
the signal of Figure 1 with added noise consisting of seg-
ments of di�erent distributions- uniform (samples 1 to 50),
gamma (with gamma-parameter 3, samples 51 to 100), ex-
ponential (samples 101 to 180) and Gaussian (samples 181

to 256). The algorithm was run with the Daubechies 6-tap
wavelet �lter, and the parameters tj and �j as shown in
Table 2.

j 1 2 3 4 5 6 7 8

tj 2 2 5 2 2 1.2 0 0

�j 0.00001 0.0001 2 30 1000 1000 10 10

J=8 T 8=0 �8=10

Table 2: Parameters for simulation
with non-stationary noise.

Figure 5 shows the output of the algorithm in this case.
Again we see that both the smoother parts as well as the later
irregular portions of the input signal have been captured by
the algorithm.

5. CONCLUSION

We conclude that �ltering in the wavelet domain, using
smoothing with regularization and with the gradient-based
switches, is able to recover both smooth and irregular parts
of the input signal from the noisy signal. Moreover the al-
gorithm is able to handle non-stationary or variable distri-
bution noise.
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Figure 1. Input signal, free of noise.
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Figure 2. Input signal with Gaussian noise added, SNR=6db.
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Figure 3. De-noised signal obtained from our algorithm, SNR=12.9db.
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Figure 4. Input signal with non-stationary noise added, SNR=6db.
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Figure 5. De-noised signal obtained from our algorithm, SNR=10.5db.


