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ABSTRACT

A novel multisensor approach to deconvolution is de-
veloped. This theory circumvents the ill-posedness in-
herent in convolution equations by overdetermining the
input signal by a multichannel system of convolvers
{pi}, chosen so that any information lost by one chan-
nel is retained by another. The deconvolution problem
is then solved by constructing “deconvolvers” that al-
low us to construct the Dirac § by filtering each u;
by its deconvolver, and then adding the filtered chan-
nels together. This in turn allows us to reconstruct
the original signal f. The process is linear and stable
with respect to noise. The general multichannel the-
ory is discussed. The deconvolution theory in radially
symmetric domains is then developed in greater detail.

1. INTRODUCTION

Linear, translation invariant systems (e.g., sensors,
linear filters) are modeled by the convolution equation
s = f * u, where f is the input signal, p is the sys-
tem impulse response function (or, more generally, im-
pulse response distribution), and s is the output sig-
nal. We refer to p as a convolver. In many applica-
tions, the output s is an inadequate approximation of
f, which motivates solving the convolution equation
for f, i.e., deconvolving f from p. If the function p is
time-limited (compactly supported) and non-singular,
we have shown that this deconvolution problem is ill-
posed in the sense of Hadamard (see [7]).

A theory of solving such equations has been devel-
oped. It circumvents ill-posedness by using a multi-
channel system. If we overdetermine the signal f by us-
ing a system of convolution equations, s; = f*p; , ¢t =
1,...,n, the problem of solving for f is well-posed if
the set of convolvers {u;} satisfies the condition of be-
ing what we call strongly coprime. In this case, there
exist compactly supported distributions (deconvolvers)

vi,t=1,...,n such that

BL-vi+ ...+ g Up=1.
Transforming, we get

prxvi+ .. o+ gk, =6,

which in turn gives
sy kv + ...+ spxv, = f.

We describe the strongly coprime condition, and we
give examples of sets of strongly coprime system re-
sponse functions and their deconvolutions for functions
in one and several variables. In the language of ap-
plications, the set of convolvers {y;} models a linear
translation invariant multichannel system consisting of
an array of sensors or filters. The system is created
so that no information contained in the input signal
f is lost. The signal f is gathered by this system as
{s8:; = f * pu;}. The signals s; are then filtered by the
v; (which have been created digitally, optically, etc., in
coordination with the creation of the system and pos-
sibly tailored to be optimized under some constraint)
and added, resulting in the reconstruction of f. We dis-
cuss the various classes of impulse response functions
modeled by the theory. We close by discussing how this
deconvolution technique works in radially symmetric
domains.

2. GENERAL MULTICHANNEL THEORY

The deconvolution problems we consider are for con-
volvers p which are realistic mathematical models of
the impulse response functions of linear translation in-
variant systems. Therefore, we exclude distributions
which are not compactly supported (since one would
have to integrate for all time to get any information
from such a system), distributions of order k£ > 1 (since



one would have to impose smoothness conditions on
any input functions), and any measures that are sin-
gular with respect to Lebesgue measure (since such a
system is impossible to build). A distribution y is a
realizable convolver if p is a compactly supported finite
Borel measure which is absolutely continuous with re-
spect to Lebesgue measure on R". We have shown the
following.

Theorem 1 ([7]) Let p(t) be a realizable convolver.
Then for f € C(R"), the convolution operator C,(f) =
f * p is not injective. If f € L*(R"), we have that
C,L*(R*) — R, C L*(R") is injective. However,
the deconvolution operator D,(f * p) = f is an un-
bounded and therefore discontinuous linear operator.
Thus, the deconvolution problem of recovering f from
f * p s ill-posed in the sense of Hadamard.

We have constructed solutions to the deconvolution
problem for various classes of compactly supported con-
volvers, assuming only that our input or initial func-
tions f are of finite energy. Ill-posedness is circum-
vented by creating a multichannel system. Each chan-
nel in the system is a convolver, and the system overde-
termines the input function with all of the convolvers
in an array chosen so that any information lost by one
convolver is retained by another. This theory of decon-
volution has its roots in the work of Wiener [12] and
Hormander [10], and has been developed into a work-
ing theory by Berenstein, Taylor, Gay, Yger, et al. [1]
— [8]. These methods are both linear (convolution with
deconvolvers) and realizable (the support of the decon-
volvers being contained in the bounded support of the
kernels of the convolution equations). Thus, deconvo-
lution at a point ¢ € R" depends only on data near
t. The theory assumes no ¢ prior: information about
the input signals. Moreover, the theory can be used to
develop a stable system for complete signal recovery.

The theory starts with the following result of Hor-
mander [10]. For the compactly supported distribu-
tions {p;}7; on R™, there exist compactly supported
distributions {¥;}? , such that py*v1+...+ pp*v, =6
if and only if there exist positive constants A and B and
a positive integer N such that

(Z |m(4)|2>

A set of convolvers {p;}7_; that satisfy the inequality
in the theorem is said to be strongly coprime. We note
that the only way a single compactly supported con-
volver can be strongly coprime is for it to be a translate
of the identity convolver; that is, for it to be the Dirac
delta or a translation thereof. This result is one way
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to state the general ill-posedness of single convolution
equations under the constraints imposed by the condi-
tions of the theorem. Now, let {F;}? ; be a given set
of transforms of compactly supported distributions. A
solution to the analytic Bezout equation

Y FR(OGH(¢) =1

is a set {G;}7_; of transforms of compactly supported
distributions that satisfies the equation. By Paley-
Wiener-Schwartz (PW.S) and basic properties of the
Fourier-Laplace transform, a solution to the analytic
Bezout equation is equivalent to solving for a set of
compactly supported distributions {v; } such that . ps;%
v; = 6, for a given set {u;} of compactly supported
distributions. By Hormander’s theorem, a strongly
coprime set {y;} is precisely a set for which the an-
alytic Bezout equation has a solution. The strongly
coprime condition guarantees not only that the trans-
forms of the convolvers have no common zeros, but also
that these zeros do not cluster too quickly as |(| —
oo. Thus, if a given signal f is overdetermined by
a strongly coprime system of convolution equations,
si = f*p;,1=1,...,n, then the problem of solving
for f is well-posed. We solve for a set {7;(¢)} of decon-
volvers which satisfy the analytic Bezout equation

fiiv; = 1.
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Taking inverse transforms of both sides of Bezout gives
Z pixv; =06.
i

The fact that the strongly coprime condition is the in-
version of the PW S growth bound allows us to solve
for deconvolvers that are compactly supported. Thus,
the deconvolution problem can be solved by construct-
ing the Dirac § for a given class of convolvers. To
construct compactly supported deconvolving functions,
we begin by solving a more general analytic Bezout
equation, i.e., for given analytic ; and ¢ satisfying
PW S growth conditions, solving for analytic #; satis-
fying PW S growth conditions such that

~
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Moreover, we want J = {b;, with {b; — las A —
00 (17); is the transform of an approximate identity).
This gives us deconvolving functions, i.e., deconvolvers
{vi,y} such that pq %11 4 + ... + pin * Up y = 9, which
in turn give

(Frp)*vigp+. ...+ (Frpn)*vny =Ffrxp=fy.



Then, as p — 6§, fy — f in the sense of distributions.
The deconvolvers in these implementable formulae are
periodic functions expressed in their Fourier series ex-
pansions (see [7]).

We give the following specific example. Let pq(t) =
X-11)(t) 5 p2(t) = X[~ /5, 5 (t) model the impulse re-
sponse of the channels of a two—channel system. An
examination of the Fourier—Laplace transforms (;((),
i = 1,2 gives that {y;} are strongly coprime (see [4]).
We develop compactly supported deconvolvers which
construct an arbitrarily close approximation ¥ of the
Dirac 6 ([7]). The formulae for the {v;} relative v
are expressed as a Fourier series. (The advantage of
constructing ¢ instead of the 6 is that we can ex-
press our formulae for the deconvolvers as functions,
and not as distributions.) The smoothness and the
size of the support of the auxiliary function i guar-
antee that the deconvolvers are compactly supported.
For the compactly supported function 3, we have that
|1,/7(z)| < (1+\Z\)3+" for z € Z, U 2, if 9 is in the Holder

space C3T7. This is sufficient to guarantee that the
series representations for the v; converge to compactly
supported functions.

Theorem 2 ([7]) The set p1(t) = X[_1,1(t) , pa(t) =
X[—\/ﬁ,\/ﬂ(t) is a strongly coprime pair of convolvers.
Let f € L*(R), and for n > 0 let ¢ be a function
with support in [—(1 + \/p),(1 + /)] in the Hélder
space C**7 such that ¢ > 0 and [R (t)dt = 1. The
deconvolvers v; y such that fx¢ = (f*p)*vy g+ (f*
H2) * Vg are given by the formulae

] 1¢ ]/2\/_)
o= (5 M i

1 Uf ("/2\/_) emi(n/ VPt
S L)

vay(t) = (%Z(—l)ijl% N
J#0

"ab n/2 mn
Z n/z t) X X[ 1,1]-

X{*\/ﬁv\/ﬂ’

The function f=*1 s an arbitrarily close approzima-
tion of f which converges to f in the sense of distribu-
tions as supp(y) — {0}.

This development works for other classes of con-
volvers and filters. The current stock of convolvers
and their associated deconvolvers includes characteris-
tic functions of squares, (hyper)cubes (see [2], [6], and
[7]) and disks and n—dimensional balls (see [3], [4]).

The theory has been expanded in one variable to more
general convolvers, including convolvers modeled by
linear combinations of characteristic functions, linear
combinations of n—fold convolutions of characteristic
functions with equally space knots (cardinal splines),
and truncated sinc, cosine, and Gaussian functions. We
have shown the conditions for a strongly coprime set
of convolvers {y;} for each of these types of functions,
which, as in the example above, is an arithmetic condi-
tion on the zero sets of the Fourier—Laplace transforms
{#;}. We then have solved for deconvolvers {v; 4} such
that ¢ = pq * vy ¢ +... 4y x vy , where ¢ is an ap-
proximate convolution identity, by solving the modified
Bezout equation ¢ =17 - U1 g + ... + fin - Up g -

In several variables, the formulae for the deconvolvers
is simplified by not only solving for an approxima-
tion to the §, but also by strengthening the strongly
coprime condition [2]. This paper gives the solution
to the deconvolution problem when the convolvers are
(hyper)rectangular regions in R™.

3. DECONVOLUTION ON RADIAL
DOMAINS

The Fourier transform on radially symmetric do-
mains is expressed in terms of Bessel functions, and
is generally referred to as the Fourier-Bessel transform
[9]. As one might expect, conditions for exact decon-
volution on these domains is also expressed in terms
Bessel functions; in particular, in terms of their zeros.

Deconvolution on circularly symmetric domains can
be expressed as a Pompeiu problem. Let X;, X5 be the
characteristic functions of the disks B(0,ry), B(0,73),
and let E be the collection of positive quotients of zeros
of the Bessel function J;.

Theorem 3 ([3]) Let £,n € E with £,n > 0. If there
exists an o > 0 such that

rt € 1
|——=2]>—=n"°,

T2
then the mapping P: f — (Xy * f + Xa * f) is injective,
and moreover there exists vy,vs such that

f:ul*(Xl*f)+V2*(X2*f).

We say that %
of E.

In [3], this theorem was also extended to the local
problem of reconstructing f in some disk B(0,R), R >
r1 + 72, from its averages on B(0,71), B(0,73).

This result fits in the larger context of Pompeiu
problems. Let E4,...,E,, be compact sets of posi-
tive measure in R", let C(R") denote the space of

is poorly approximated by elements



continuous functions, and let M(n) be the group of
Euclidean motions in R". Then, the (global) Pompeiu
transform associated to the sets Ey,..., F, is the map-
ping P:C(R") — C(M(n))™ given by

(Pf)(g) = ( gElfdw,...,/gEmfdw> .

The problem is then to give conditions on the sets
FE,,...,E,, to guarantee that the mapping P is injec-
tive. If P is injective, we say that E1,..., F,, have the
Pompeiu property. We can construct the inverse map-
ping by constructing deconvolvers which recover the
function f, as in the theorem above.

A single disk or ball never has the Pompeiu property.
However, a pair that satisfies certain conditions does.

Theorem 4 ([3]) Let

Zn = {% 6> 0,7 /2(€) = T a(n) = 0}.

A pair of balls B(0,71), B(0,73), has the Pompesu prop-
erty if and only if :—: & Z,.

Thus, for such a pair, deconvolution is possible, for
the inverse mapping is created by constructing decon-
volvers.

We can also formulate a local formulation of this, by
restricting ourselves to open sets U that can be covered

by balls of a fixed radius R.

Theorem 5 ([3]) Let ri,r2 > 0, 7+ ¢ Z,,, and R >
r1+ra. Then the pair of balls B(0,71), B(0,rs), has the
local Pompeiu property with respect to B(0,R). Under
the additional condition that % 1s poorly approzimated
by elements of Z,, the condition R > r1 + ry is also
necessary.

The deconvolvers for these theorems are expressed in
terms of Fourier-Bessel series, much in the same man-
ner as in Theorem 2. We are currently looking to de-
velop approximate deconvolvers in B-splines.
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